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ABSTRACT

We describe in this paper new developments in the characterization of coated particle nuclear fuel using optical
microscopy and digital imaging. As in our previous work, we acquire optical imagery of the fuel pellets in two
distinct manners that we refer to as shadow imaging and cross-sectional imaging. In shadow imaging, particles are
collected in a single layer on an optically transparent dish and imaged using collimated back-lighting to measure
outer surface characteristics only. In cross-sectional imaging, particles are mounted in acrylic epoxy and polished
to near-center to reveal the inner coating layers for measurement. For shadow imaging, we describe a curvature-
based metric that is computed from the particle boundary points in the FFT domain using a low-frequency
parametric representation. We also describe how missing boundary points are approximated using band-limited
interpolation so that the FFT can be applied. For cross-section imaging, we describe a new Bayesian-motivated
segmentation scheme as well as a new technique to correct layer measurements for the fact that we cannot observe
the true mid-plane of the approximately spherical particles.
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1. INTRODUCTION

As noted in our previous paper,1 the U.S. Department of Energy (DOE) Advanced Gas Reactor (AGR) Fuel De-
velopment and Qualification program was conceived to support near-term deployment of high-temperature, gas-
cooled reactor technology and to establish a basis for the development of fuels suitable for very high-temperature,
gas-cooled reactors. Continuing efforts in the first phase of the AGR program have concentrated on improv-
ing the production of high quality, silicon carbide-based, coated fuel particles (also known as ceramic-coated or
TRISO fuel). Coated particle fuel development and characterization facilities have been established at Oak Ridge
National Laboratory (ORNL) with the capability to characterize coated particles containing depleted, natural,
and enriched uranium. This capability is required to support coating development work and predict the ultimate
performance of the fuel particles. The goal of the work we present in this paper is to apply high-throughput,
image-based measurements to enhance the efficiency and accuracy of the coating characterization.

An example image of a fully-coated particle is shown in Fig. 1, where the particle has been polished to
near-center to reveal the structure of the coating layers. The image of Fig. 1 is an example of the cross-section
images used in Section 3 below. From the center outward, the five layers of a fully-coated particle are the fuel
kernel, a porous carbon buffer, inner pyrocarbon or IPyC, silicon carbide or SiC, and outer pyrocarbon or OPyC.
Also evident in Fig. 1 is a shadow outside the OPyC; this shadow represents the excess particle since we cannot
polish to the exact particle center (if particles are polished too near or past the center, the fuel kernels tend to
dislodge).

We inspect particles using two types of imagery: shadow and cross-section. In shadow imaging, particles are
collected in an optically transparent dish and imaged using collimated back-lighting. In these images, particles
appear as silhouettes, as shown in Fig. 2, and the goal is to characterize the distribution of outer surface shapes
based upon the perimeters of the observed silhouettes. In cross-section imaging, particles are mounted in a
square array of acrylic epoxy, polished to near-center, and illuminated via both back-lighting and reflected light.
This results in single-particle images, such as that shown in Fig. 1, and the goal is to measure the individual
layer thicknesses at multiple points around the particle. Images are acquired using a Leica DMRX analytical,
upright microscope with fluotar objectives. This microscope is fitted with a Leica DC500 camera, which employs
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Figure 1. Cross-section view of a coated particle nuclear fuel pellet. Note the homogeneous kernel, which was a char-
acteristic of the images in our earlier work. This 3900 × 3090 pixel image at 2.826 pixels/µm represents a region of
approximately 1380µm × 1093µm.

a 1-megapixel Bayer mosaic chip and piezoelectric stepping to acquire 12-megapixel (3900 × 3090) images. For
shadow imaging, image resolution is approximately 1.12 pixels/µm and for cross-section imaging, image resolution
is approximately 2.83 pixels/µm. For fully-coated particles in which we are currently most interested, typical
dimensions are approximately 175µm kernel radius, 100µm buffer thickness, 40µm IPyC thickness, 35µm SiC
thickness, and 40µm OPyC thickness, resulting in particles of approximately 780µm in total diameter. Shadow
imaging is typically performed on either fully coated particles or uncoated kernels.

The remainder of this paper is organized as follows. In Section 2, we discuss the analysis of shadow images,
such as that shown in Fig. 2. We briefly review our earlier work and then describe more recent developments
including band-limited interpolation to replace missing boundary points, a low-frequency sinusoidal approxima-
tion of the particle perimeter, and the computation and applicability of a curvature metric. In Section 3, we
turn our attention to the analysis of cross-section imagery such as the example in Fig. 1. We describe a new,
Bayesian-motivated approach for finding the layer boundaries. We also present an updated method to correct
the observed layer thickness measurements for off-center measurement. We conclude in Section 4 with some brief
closing remarks.

2. SHADOW IMAGE ANALYSIS

In this section, we describe measurements made using back-lit shadow imagery, such as the example shown in
Fig. 2. Our goal is to characterize the distributions of various shape parameters (radius, eccentricity, curvature
metric) of the approximately spherical particles by analyzing the silhouettes of many such particles that are
presented in random orientations.

We previously described in detail1 how individual particles are segmented and how their perimeter points
are identified; we summarize that process here. Our first goal is simply to locate each particle in the image. We
begin by subsampling the original image by a factor of four to speed processing. We next apply grayscale dilation
to grow the bright background areas and effectively separate the particles from one another. We then threshold
so that all dark regions (particles) are set to one and all background pixels are set to zero. The centroid, area,
and eccentricity of each possible particle region are computed and used to discard any region that is too close
to an image boundary or any likely non-particle regions (such as opaque regions of the particle holder as in the



Figure 2. Example shadow image of multiple particles. This 3900 × 3090 pixel image at 1.1175 pixels/µm represents a
region of approximately 3.49mm × 2.77mm.

upper left of Fig. 2). We next apply the distance transform and watershed segmentation to find the boundaries
between different particle regions. An example result, based on the image shown earlier in Fig. 2, is shown in
Fig. 3. We process each identified particle sequentially, using a full-resolution sub-image that is extracted from
the original (i.e., not subsampled) image.

Figure 3. Segmentation of image from Fig. 2.

In each single-particle sub-image, we locate perimeter points using edge detection. We estimate the particle



center from these perimeter points using the Kasa circle fitting algorithm.2, 3 We next try to find N perimeter
points spaced equally over [0, 2π) about the estimated center, again using edge detection. Note that some
perimeter points are not found due to abutting particles. To improve accuracy, we repeat the circle fit on these
new perimeter points to update the center estimate. Finally, we seek N new perimeter points around the updated
center. Our measurement process begins with these points.

2.1. Perimeter Representation
The perimeter points of a particle silhouette, found as described above, often capture small local variations
due to surface roughness or small pieces of debris. These variations are not indicative of the particle shape we
seek to characterize, can lead to higher measurement variance, and can significantly perturb sensitive curvature
computations. We hence seek a smoother boundary. We represent the perimeter points as a parametric curve
defined by x(s) and y(s) where the variable s represents the angular parameterization over [0, 2π) about the
estimated particle center. An ideally spherical particle would imply a circular silhouette with x(s) = r cos(s) and
y(s) = r sin(s), where r is the radius. With this thought in mind, we compute FFTs of the sampled x(s) and y(s)
and truncate higher frequency terms. To compute the FFTs, we need uniform sampling of x(s) and y(s) over the
entire [0, 2π) range. As mentioned previously, however, perimeter edge points are often missing due to abutting
particles; see, for example, the particle labeled “8” in Fig. 3 and note how it abuts four other particles. This
leads to missing samples on the perimeter curve, as can be seen in Fig. 4. To compute the FFTs then, we must
first interpolate the missing samples of x(s) and y(s). To accomplish this in a manner consistent with our goal
of low-frequency representation described above, we implement a bandlimited interpolation method suggested
by Ferreira4 and described as follows.

Figure 4. Plot of x(s) for particle “3” from Fig. 3. The points indicate actual sample locations and the solid line
represents the truncated FFT representation after bandlimited interpolation. Note the missing samples near 2.1 (≈ 120◦)
and 3.5 (≈ 200◦) from abutting particles.

We define the vector x = [x0 x1 . . . xN−1]T , where xn = x(n∆s) and ∆s = 2π/N . The N -point FFT of
x, which we define as X, can be represented as a matrix multiply X = Fx, where the elements of the N × N
matrix F are defined by Fik = exp(j2πik/N). The inverse FFT can similarly be represented as x = F̃X, where
F̃ = 1

N FH . If we assume that x is bandlimited, then some elements of X are zero; this can be expressed as
X = ΓX, where the N ×N matrix Γ is diagonal with only 1’s or 0’s on the diagonal. This leads to the following
identity:

x = F̃ΓFx = Bx. (1)

Define U to be the set of indices for which x is unknown (i.e., the missing points) and K the set of indices for
which x is known. Let the cardinality of U be P (hence the cardinality of K is N −P ). For every u ∈ U , we can
write

xu = Bux =
N−1∑
i=0

Buixi =
∑
i∈U

Buixi +
∑
i∈K

Buixi, (2)



where Bu represents row u of the matrix B. Concatenating the above expression for every u ∈ U , we can write

xu = Uxu + Kxk, (3)

where xu is the P × 1 vector corresponding to the unknown points of x that we seek, U is the P ×P sub-matrix
of B defined by taking the rows in U and columns in U , K is the P × (N −P ) matrix defined by taking the rows
of B in U and columns in K, and xk is the (N −P )× 1 vector corresponding to the known points (i.e., in K), of
x. We can solve for the unknown points with

xu = (I−U)−1Kxk. (4)

Recalling that we seek a low-frequency representation for x, the matrix B is then computed as in Eq. (1) by
setting all but the first M + 1 and last M diagonal elements of Γ to one, where M defines the bandwidth we
desire. Once we have estimated the missing samples of x(s) and y(s) in this manner, we simply take the N -point
FFTs of x and y, set to zero all but the first M + 1 and last M coefficients, and then compute the inverse FFTs
to yield the bandlimited representation of the silhouette boundary. An example is shown in Fig. 4.

2.2. Measurements
We compute several simple measurements for each particle from the bandlimited boundary points. These include
mean radius, standard deviation of the radius, maximum radius, and minimum radius. Note that we only compute
these measurements at points where we actually find the boundary (i.e., we do not use the interpolated missing
points for measurement). We also compute the same measurements based upon diameters, where the diameter
is defined by the distance between opposite boundary points. Historically, diameter aspect ratios (max diameter
over min diameter) have been used as shape metrics for tolerance limit specifications. Aspect ratios, however,
are gross descriptors of overall particle shape and are not necessarily correlated with potential structural failure
except in extreme cases. Curvature-based metrics, on the other hand, can be used to identify sharp features that
might serve as stress concentrators and lead more directly to possible failure.

The extrinsic curvature for a parametric curve (x(s), y(s)) can be expressed as

κ =
x′y′′ − y′x′′(

(x′)2 + (y′)2
)3/2

, (5)

where x′ ≡ dx/ds. We analytically compute samples of the derivatives in Eq. (5) by applying frequency domain
identities to the bandlimited FFT representations of x(s) and y(s). For example, let Xk for k ∈ [0, N − 1]
represent the FFT coefficients of the N samples of x(s) after bandlimited interpolation and zeroing of the
higher-frequency terms as described in Section 2.1 above. We compute samples of x′(s) by taking the inverse
FFT of X ′

k = jωkXk where ωk = [0, 1, . . . , N/2,−N/2 + 1,−N/2 + 2, . . . ,−1] and samples of x′′(s) by taking
the inverse FFT of X ′′

k = (jωk)2Xk. With samples of the necessary derivatives computed in this way, we then
compute samples of the curvature using Eq. (5). As a shape metric for a given particle, we compute the product
of the maximum curvature and the radius at the point of maximum curvature; we refer to this metric as Rκmax.
It is a dimensionless quantity that is effectively scale invariant; it will equal 1.0 for a perfectly spherical particle
(circular shadow), while a significantly larger number will indicate a sharp corner or protrusion. The Rκmax

metric, under some significant simplifying assumptions, can be intuitively correlated with areas of high stress
using membrane theory.5

We note that different shape metrics can emphasize differently the aspherical features present in particles.
For example, diameter aspect ratio is an overall measure of particle eccentricity and can be influenced by up
to four aspherical features corresponding to the opposing perimeter points of both the maximum and minimum
diameter locations. Radius aspect ratio similarly measures eccentricity, but is affected by at most two aspherical
features at the maximum radius (e.g., protrusion, corner) and minimum radius (e.g., facet, crater). When using
diameter aspect ratio, the impact of a localized aspherical feature can sometimes be reduced because of the
dependence upon the opposing perimeter point. Because of this, radius aspect ratio is typically a more sensitive
measurement for quantifying localized aspherical deviations. The Rκmax metric is affected by only one aspherical
feature: the sharpest corner. Many particles with high values of Rκmax are found acceptable according to both
diameter and radius aspect ratios. As particle failure is often predicted by modeling, we are currently seeking
to find the shape metrics that are most highly correlated with predicted particle failure.



Figure 5. Example particle with a protrusion leading to a large value of Rκmax = 1.77. The upward triangle indicates
the point of highest curvature (the downward triangle indicates lowest curvature). The additional lines indicate maximal
and minimal radii and diameters, where radii are solid lines and diameters are dashed lines.

3. CROSS-SECTION IMAGE ANALYSIS

Here we describe the analysis of cross-section images like the example shown earlier in Fig. 1. Our goal with this
analysis is to characterize the thickness and uniformity of the interior layers to aid in evaluating and improving
the coating processes. In preparation for imaging, the particles are mounted flat in a uniform mesh grid. The
grid is then coated with transparent acrylic epoxy such that the surfaces of the particles are coplanar with the
surface of the epoxy. This surface is polished away until cross-sections of the particles are visible, as shown
earlier in the example of Fig. 1. The particles are not polished all the way to their center plane since the kernels
might loosen, damage the buffer, and/or dislodge. Additionally, multiple particles, with some size variation, are
mounted with the same bottom plane; hence, the center or mid-plane of one particle will not necessarily be the
same as that for another particle of a different size. Note that we correct the layer thickness measurements for
this off-center observation, as described in Section 3.2 below.

In our previous work,1 we noted that the centers of the acquired images were always within the kernel region
and that the kernel region was approximately homogeneous; this can be seen in the earlier example of Fig. 1.
Necessary changes in the particle materials and image acquisition processes, however, have removed these helpful
constraints from the image processing environment. An example of the images we are now analyzing is shown
in Fig. 6. We previously used the homogeneity of the kernel, and the fact that the image center was inside the
kernel, to perform a simple grayscale thresholding to find a rough estimate of the kernel region. We made an
initial estimate of the particle center as the center of this approximate kernel region. Based upon this center
estimate, we then sought the interface between the kernel and buffer, again making use of the kernel homogeneity
compared to the roughness and generally lower gray values in the buffer region. As should be evident from Fig. 6,
this approach will not work with the current images of interest. Instead, we have developed a simple program
that sequentially presents each image of a selected directory and instructs a user to mouse-click one point near
the kernel center and another point anywhere along the kernel-buffer interface. These two manually-entered
points are then used as the initial estimate for the kernel center and approximate (a priori) location of the
kernel-buffer interface.

Based on the manually-entered estimate of the kernel center, we compute an “unwrapped” image, like the
example shown in Fig. 7, by resampling the original image on a polar grid point at one-degree angular resolution
and one-pixel radial resolution. We search for the layer boundaries in this unwrapped image.



Figure 6. A more recent cross-section example image demonstrating the lack of homogeneity in the kernel region. We
can also no longer guarantee that the image center lies within the kernel (although it does in this example).

Figure 7. Unwrapped image computed by sampling the image of Fig. 6 on a polar grid about the particle center.

3.1. Finding the Boundaries

We previously employed1 a rudimentary, deformable contour-like approach where a front of “marching points”
moved from left-to-right across an unwrapped image. The movement of these points was controlled by sets of
pragmatic, ad hoc rules based upon gray levels, gradients, and smoothness constraints. Here, we adopt a more
formal, yet quite simple, approach using a Bayesian MAP-like methodology. We note that this new approach
was conceived primarily as a means to initialize a subsequent (improved) deformable contour; this initialization,
however, has proven accurate and robust enough to serve as the final segmentation.

Considering the boundary between two layers in an unwrapped cross-section image, we seek points on the



boundary, rθ, such that the probability that rθ is a boundary point is maximized. More formally, we seek

max
rθ

(
P (rθ|I) =

P (I|rθ)P (rθ)
P (I)

)
, (6)

where I represents the unwrapped image and θ represents the angle on the polar grid (vertical axis in Fig. 7).
Since the image is fixed, we can ignore P (I) in our computations. The P (rθ) term represents a priori information
on the boundary location. For a given layer, we model P (rθ) as normally distributed about the design layer
thickness or, in the case of the kernel-buffer interface, normally distributed about the distance between the
manually-selected kernel center and interface point. The remaining term of interest from Eq. (6) is then P (I|rθ),
which is the probability of observing the image given that the point rθ is a boundary point. We address this
term as follows.

For each point in the unwrapped image, we consider the statistics of a region to its left, Wl, and a region to its
right, Wr, as illustrated in Fig. 8. The triangular shapes of these regions are defined by boundary smoothness,
which constrains the angles at the rθ center point, and the expected layer dimensions, which constrain the
horizontal extent of each region. For each pixel in an unwrapped image, we compute the mean and variance of
the pixel values in both Wl and Wr. Note that these computations can be made using (four) simple filtering
operations on the unwrapped image. We then compute the area under the overlap of the two Gaussians with
these parameters. This area, Plr, can be thought of as the probability of error in calling rθ a boundary point,
effectively quantifying how unlikely an image with boundary point rθ is. Conversely, the quantity 1−Plr can be
thought of as the probability of the image given that rθ is a boundary point, i.e., P (I|rθ).
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Figure 8. Region-based statistics used for boundary finding. For every pixel in the unwrapped image, rθ, we consider
regions to the left and right, Wl and Wr, respectively. The shapes of these regions are constrained by smoothness criteria
and expected layer dimensions. We compute the means and standard deviations in these regions and then the amount of
overlap, Plr, between two normal distributions with these parameters. The quantity 1 − Plr is used for P (I|rθ). In this
illustration, rθ is shown on an example boundary (dotted line) that is at the limit of allowable smoothness.

We have now defined the two quantities of interest from Eq. (6) for each pixel in the unwrapped image. To
find a complete layer boundary, we seek a set of points, {rθ}, that corresponds to a vertical path (i.e., 0 to 2π)
in the unwrapped image such that the sum of all the P (rθ|i) along this path is maximized relative to all of the
possible paths. In other words, using the traditional log-likelihood expression, we seek to solve

max
{rθ}

(∑
θ

log P (I|rθ) + log P (rθ).
)

(7)

We accomplish this by first finding the maximum probability point in each row of the unwrapped image and
begin a path with each of these points. Each of these paths is completed by progressing in a row-by-row (angular)
manner. We examine a horizontal (radial) neighborhood about the previous point, where the horizontal extent
of the neighborhood is constrained by our smoothness criteria, and add to the path the maximum probability
point in the neighborhood. After all of the paths have been constructed in this manner, we select as the final
path the one that satisfies Eq. (7). The final result of applying this segmentation approach for each layer of the
unwrapped image in Fig. 7 is shown in Fig. 9.



Figure 9. Result of segmentation applied to unwrapped image of Fig. 7.

3.2. Off-center Correction

As we mentioned in the beginning of Section 3, the cross-section plane observed in our images is generally not
coincident with the true center plane of the particle. For this reason, the layer boundaries found as described
cannot be used directly for accurate layer thickness measurements. This idea is represented in Fig. 10, which is
a side view illustration of top-down cross-section imaging. As shown in the figure, radius of the layer boundary
(dotted line) we measure from a cross-section image is represented as rm, while the true center-plane radius is
r. The polish-plane outer boundary of the outermost layer is represented by Rm while the true center-plane
outer radius of the entire particle is R. The quantity p represents the amount of particle that is removed in the
polishing process and is measured using a surface contact height gauge. With the measured quantities rm, Rm,
and p, we can show that the corrected layer position r is given by:

r =
(
r2
m +

[ 1
2p

(R2
m − p2)

]2) 1
2

(8)

We compute this correction for each boundary point of each layer. These corrected boundary points are used for
all subsequent measurements (e.g., mean, min, and max layer thicknesses; standard deviation of layer thicknesses;
etc.).
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Figure 10. Side view illustration of cross-section imaging that shows the quantities used for correcting off-center obser-
vation. The measured quantity of interest is rm while the true value is r.



4. CONCLUSIONS

We have described some recent developments in our use of image processing for the characterization of coated
particle nuclear fuel. We discussed two types of coated particle image inspection, shadow imaging in Section 2 and
cross-section imaging in Section 3. For shadow imaging, we described a new parametric boundary representation
that made use of bandlimited interpolation and low-frequency sinusoidal representation. We also described the
analytic computation of curvature in the FFT domain as well as a new curvature-based shape metric and discussed
its applicability. For cross-section imaging, we described a MAP-like segmentation approach and discussed off-
center correction for the observed layer dimensions. All software to date has been implemented and compiled
using the MATLAB environment. Shadow image analysis is fully automated, while the cross-section analysis
currently requires some minimal manual interaction (the selection of two landmark points in each image). The
analysis programs have been used to analyze many thousands of particles to date and have proven very beneficial
in improving our capabilities for manufacturing coated particle nuclear fuel.

ACKNOWLEDGMENTS

Prepared by Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

REFERENCES
1. J. R. Price and J. D. Hunn, “Optical inspection of coated particle nuclear fuel,” in Machine Vision Applica-

tions in Industrial Inspection XII, 5303, pp. 137–149, 2004.
2. I. Kasa, “A circle fitting procedure and its error analysis,” IEEE Transactions on Instrumentation and

Measurement 25, pp. 8–14, March 1976.
3. C. Rusu, M. Tico, P. Kuosmanen, and E. Delp, “Classical geometrical approach to circle fitting – review and

new developments,” Journal of Electronic Imaging 12, pp. 179–193, January 2003.
4. P. Ferreira, “Noniterative and fast iterative methods for interpolation and extrapolation,” IEEE Transactions

on Signal Processing 42, pp. 3278–3282, November 1994.
5. P. Lowe, Thin Shell Theory, P. Noordhoff Ltd., 1964.


