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Abstract. We describe a method for indexing and retrieving high-resolution 
image regions in large geospatial data libraries.  An automated feature extrac-
tion method is used that generates a unique and specific structural description of 
each segment of a tessellated input image file.  These tessellated regions are 
then merged into similar groups and indexed to provide flexible and varied re-
trieval in a query-by-example environment.   

1   Introduction 

Large geospatial data libraries of remote sensing imagery are being collected today in 
higher resolution formats both spatially and spectrally and at an unprecedented rate.  
These libraries are being produced for many applications including hazard monitor-
ing, drought management, commercial land use planning, estuary management, agri-
cultural productivity, forestry, tropical cyclone detection, homeland security, and 
other intelligence and military applications [1, 2].  While these systems do provide 
end-users with useful geographic information data products, it is typically required 
that a user know precise information in a world-oriented dataset regarding a region of 
study if they are to achieve effective results.   

Techniques that facilitate search and retrieval based on image content, for example 
in a query-by-example environment, can provide an analyst or researcher with a rapid 
method for searching very large geospatial libraries with minimal query specification.  
Content-based image retrieval (CBIR) refers to techniques used to index and retrieve 
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images from databases based on their pictorial content [3, 4].  Pictorial content is 
typically defined by a set of statistical or semantic features extracted from an image to 
describe the spectral content, texture, and/or shape of the entire image or of specific 
image regions.  Region-based image retrieval is referred to as RBIR [5].   

In a geospatial library environment these searches produce results such as the frac-
tion of queried cover type existing in a defined region, e.g., describing the coverage of 
city, urban/suburban, or forest content.  Many CBIR methods for geospatial data at-
tempt to produce a description of image primitives at the pixel level (e.g., based on 
local structures, textures, or spectral content) [5, 6]. Yet as the resolution of these data 
sources increases, the ability to automatically identify cover types by classifying pix-
els becomes problematic due to the highly-resolved mixture of man-made and natural 
structures that are present in complex spatial arrangements.  

Fig. 1 demonstrates this point through several examples of the high-resolution im-
agery that will be used throughout this discussion.  These image regions represent a 
wide variety of cover types ranging from mixed deciduous and conifer forest lands to 
suburban and industrial settings.  At these resolutions and with the complex prox-
imities of the various man-made and natural structures, it is difficult to apply pixel 
classification methods to segment image content.   

(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)  

Fig. 1. Examples of a wide variety of spatial data regions that may exist in a large geospatial 
image database including, (a) forest, (b) agriculture, (c) water structure (locks, dams, etc.), (d) 
urban/suburban area, and (e) industrial sites.  Resolution of these scenes are 0.5m per pixel. 

At the Oak Ridge National Laboratory (ORNL) we are developing methods to 
automatically describe these region types so that a large image library can be effi-
ciently assembled and indexed to perform content-based retrievals that will accom-
modate searches for specific spatial structure.  This system encompasses three main 
development areas: a software agent architecture to support distributed computing and 
to gather image content and metadata from the web, a geospatial data modeling com-
ponent to register the imagery in a consistent world-coordinate system, and a RBIR 
component to index imagery for search and retrieval.  In this paper we will focus 
primarily on the RBIR aspects of search and retrieval.  In Section 2 we give a brief 
overview of the architecture of the archive generation system that has been developed.  
In Section 3 we review the critical components of our image region description and 
indexing approach. Finally, in Section 4 we present and discuss results obtained using 
the data set represented in Fig. 1, a total indexed land area of approximately 153 km2 
(59 mi2) at 0.5m per pixel resolution.   
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2   Overview of Geospatial Library System Architecture  

At ORNL we have developed a system and architecture by combining novel  
approaches from three distinct research areas: software agents, georeferenced data 
modeling, and content-based image retrieval.  The resulting technology represents a 
comprehensive image data management and analysis system.  This system allows  
us to meet the challenges of organizing and analyzing large volumes of image data, 
and of automating the image consumption process to populate the database. The  
overall system approach breaks down into three components: (1) an innovative soft-
ware-agent-driven process 
that can autonomously 
search through distributed 
image data sources to 
retrieve new and updated 
information, (2) a geo-
conformance process to 
model the data for tempo-
ral currency and structural 
consistency to maintain a 
dynamic data archive, and 
(3) an image analysis 
process to describe and 
index spatial regions repre-
senting various natural and 
man-made cover types.   

Fig. 2 represents the agent-based architecture of our design. There are five types of 
agents that are represented in this system. The Coordination Agent controls the work-
flow between the different agents. The Crawler Agent performs a depth-first search 
for image links on potential websites (in our case, only URL’s ending with .edu, .gov 
and .net).  The Download Agent downloads images for all the image links generated 
by the Crawler Agent.  The Download Agent coordinates with the image repository to 
ensure that the image does not already exist in the repository or that the image is 
newer or has a higher resolution than the existing one. 

The fourth type of agent is the Markup Agent.  This type of agent creates XML 
files that have images marked up with their properties and metadata.  For each image 
in the repository, this agent extracts image properties like height, width, bit planes, 
etc.  In addition, this agent extracts geospatial information like the images bounding 
box coordinates from the accompanying metadata/world file.  After collecting this 
information, it creates an XML file for each image in the image repository using all of 
the above-deduced properties.  The XML files are then stored in a separate XML 
Repository. 

Finally the fifth agent type, Extractor Agents, perform preprocessing of the images.  
Typically each Extractor Agent runs on a separate processor so that images can be 
processed in parallel. An image is first segmented into block segments of size 
128×128 pixels.  Once the image segments are created, a feature vector file describing 
each segment is created by making use of the image properties in the XML file and 
the feature extraction methods described below.   
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Fig. 2. Schematic representation of the agent architecture 
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To deploy this agent architecture, we used the Oak Ridge Mobile Agent Commu-
nity (ORMAC) framework [7].  This framework has been under development over the 
course of several agent-based research projects. ORMAC is a generic agent frame-
work providing transparent agent communication and mobility across any Internet 
connected host. 

3   Image Analysis 

Once the imagery has been downloaded by the software agents, our goal is to generate 
a  succinct  description  of  an  image-dependent  number  of  contiguous  areas. Fig. 3  
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Fig. 3. Process flow shows tessellation of the input tile, feature extraction, segment clustering, 
indexing, and database building for query-based search and retrieval 

provides an overview of the process.  For this application we are restricting our analy-
sis to a single spatial resolution.  In general, for our architecture, multiple resolution 
data is handled independently and searches can be drilled into by performing a query 
at one resolution to locate candidate regions, followed by a step-up or step-down in 
resolution based on longitude and latitude coordi-
nates. Our approach begins with an image tile, for 
example of the size represented in Fig. 1. These im-
age tiles are 3100x3100 pixels representing a size of 
1,750m on a side.  

The tiles are tessellated into 128×128 pixel seg-
ments corresponding to 64m×64m area. The segment 
size was determined heuristically by ensuring that 
various cover structure would be adequately repre-
sented in each segment. Fig. 4 shows examples in 
clockwise order from the upper left of four cover 
types: agricultural, forested, suburban, and industrial.  
A number of structure-oriented features are extracted 
from each segment.  These features are reduced using 

 

Fig. 4. Example image seg-
ments representing four cover 
types 
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a PCA/LDA method [8] to provide a short-length vector for segment clustering by a 
region growing procedure to organize similar segments into contiguous groups.  Each 
contiguous group represents a sub-region in the original image tile and a summary 
feature description is generated for indexing.  Also, the region boundary is run length 
encoded for efficient storage in the database.  Finally, an indexing tree is developed 
using the region features by application of an approximate nearest neighbor (ANN) 
method as described in Ref. [9].  The indexing tree provides O[log2(n)] retrieval  
efficiency from the database through a query-by-example RBIR.  

3.1   Feature Analysis 

For this research, we have experimented with features that measure the texture and 
structure of the image segments.  These features are not intended to be exhaustive in 
their characterization of these attributes, but rather to demonstrate the feasibility of 
the approach.  The spectral attributes of an image segment are also valuable and have 
been used by many researchers to classify cover types in geospatial data [5, 6, 10].  
But over large geospatial extents, spectral information can unintentionally limit a 
query-based search to a confined region.  This is demonstrated by the Landsat The-
matic Mapper (TM) data shown in Fig. 5 (30m per pixel resolution).  Although we are 
not using Landsat TM data for this study, the four regions show agricultural areas 
over a large geographical distance and include Maine, Virginia, Tennessee, and Flor-
ida.  Although the same three spectral bands were used to visualize crop regions, the 
spectral content varies tremendously.  To avoid this unintentional bias in our indexing 
and retrieval process, we have adapted two feature sets that rely primarily on edge 
information to describe texture and structure.   

 

Fig. 5. Examples from the Landsat Thematic Mapper showing variation in spectral response 
across large geospatial extents.  Three of six spectral bands have been selected for display that 
emphasize variations in crop cover. From left to right, Maine, Virginia, Tennessee, Florida. 

We characterize image segment texture using local binary patterns (LBP) [11] and 
local edge patterns (LEP) [12]. In the rotation-invariant LBP texture operator, each 
3×3 pixel neighborhood in the intensity image is thresholded by the intensity value of 
the center pixel. As there are 8 neighboring pixels, each of which can be represented 
as a 1 or 0 (if above or below the center pixel value, respectively), it is evident that 
there are 256 (28) possible patterns that can result from this thresholding. Since, how-
ever, we desire rotational invariance, we note only those patterns that are unique un-
der rotation. For example, the three patterns in Fig. 6 are all (approximately) equiva-
lent under rotation about the center pixel. Applying this equivalence-under-rotation 
idea, it can be shown that there are only 36 unique patterns. This implies that every 
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pixel in the image can be assigned a number from 1-36 depending upon its LBP. The 
36-bin normalized distribution (i.e., histogram) of the LBP values in a given 128×128 
image segment hence provides 36 features for that region. 

The LEP is computed 
almost identically to the 
LBP, except that we exam-
ine 3×3 pixel neighbor-
hoods in the image edge 
map rather than the image 
intensity values. When 
considering the edge map, 
we must also consider the state of the center pixel, which is a 1 if the center pixel is an 
edge, or a 0 if not. This doubles the number of potential patterns from 36 to 72 so that 
every pixel in the image can be assigned a number from 1-72 depending upon its LEP. 
The 72-bin normalized distribution of the LEP values hence provides 72 features. 

To characterize structure in a segment, we analyze the distribution of edge orienta-
tions. The motivation to this approach is that man-made structures generally have 
regular edge features oriented in only a few directions (usually two for buildings) 
while natural image regions have randomly oriented edges.  Different mixtures of 
man-made and natural structures will result in a variety of descriptions.   

We compute local image orientation at each edge pixel using steerable filters [13]. 
We then find the 64-bin histogram of the edge orientation over angles from -90 to +90 
degrees. The edge orientation distribution for a man-made structure is shown in the top 
of Fig. 7 (a) and that for the natural image is shown in the bottom of Fig. 7 (a). Note in 
the top of Fig. 7 (c) that there are two peaks in the edge orientation distribution near -
80 degrees and +10 degrees that correspond to the orientations of the building. The 
distribution for the natural scene in the bottom of Fig. 7 (c) however, is approximately 
uniform. Since we require that the stored features be invariant to rotations of the source 
image,  we  next  take  the  discrete  or  fast  Fourier transform of the 64-point edge ori- 

(a) (b) (c)(a) (b) (c)

 

Fig. 7. Image segment in (a), edge map in (b), and edge orientation of (b) in (c). The top row 
represents a man-made structure and the bottom row a natural scene. 
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Fig. 6. Three local binary patterns (LBP) that are equiva-
lent under rotation about the center pixel 
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entation histogram and keep the magnitude of the first 32 points as the final features. 
The magnitude of the DFT or FFT is invariant to circular shifts of the data. 

The total number of texture and structure features used at this point is therefore 140 
(i.e., 36+72+32).  Subsequent to the feature extraction step we apply a PCA and LDA 
process that results in a reduction from 140 to 8 features per image segment.  These 
features are the basis of geospatial clustering and indexing for search and retrieval. 

3.2   Geospatial Clustering 

Once the features of the image segments have been extracted, it is possible to use this 
feature vector as an index for retrievals.  Since there are generally a large number of 
contiguous 128×128 segments that define a content-based region (e.g., forested, sub-
urban, etc.), we seek to group neighboring segments with similar features together to 
form a sub-region within an image tile or tiles.  We perform a geospatial clustering 
procedure using a region growing technique to connect large contiguous and homoge-
neous segments of similar structure and texture characteristics.   

Region growing is initialized by randomly selecting a seed segment at location 
(x,y), where (x,y) designates a coordinate of the corner or centroid of a segment.  A 
segment with feature vector v(x,y) is merged with a neighboring segment with feature 
vector v’, or with a segment group with mean vector <v’> if, 

- the coordinate of the neighboring segment or of the closest segment group is 
an element of the set {(x±1, y±1)}, 

- |v-v’| < T1 or |v-<v’>| < T1, where T1 is a user-specified threshold, 
- the resulting variance, σ2, of the new segment group is less than T2, where T2 

is a user-specified threshold used to limit the variance. 

The merging process is continued until all the segments in the image tile have been 
tested. Fig. 8 shows typical results of this merging process.   

 

Fig. 8.  Region growing results across three tiles from the image library. Each bordered region 
represents one homogeneous, connected group of segments as determined by their texture and 
structure features.  

Once the contiguous segment regions have been determined, each segment group 
(image sub-region) has 16 descriptive features associated with it, i.e., each sub-region 
is described by vector w = (<f1>, <f2>, …, <fN>…, σ1

2, σ2
2, …, σN

2)t, for N=8, where 
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<fn> is the average of the n-th feature across the ensemble of segments in that group, 
and σn

2 is the corresponding variance of that feature.  It is this sub-region description 
that is used for indexing and retrieval in the RBIR library.   

4   Results 

The results presented here are for a geospatial library composed of 50 image tiles 
(3500x3500 pixels, 1750m×1750m, 0.5m per pixel) representing approximately 153 
km2 of land in and around the U.S. Department of Energy’s Oak Ridge Reservation 
[14].  For this demonstration, the image regions (i.e., over all tiles) were tessellated 
into 39,200 segments of size 128×128 pixels.  Features were then extracted for each 
of the segments, which were subsequently clustered as described in Sections 3.1 and 
3.2 above.  The number of sub-regions developed through geospatial clustering was 
4,810, resulting in a reduction of 88% in the number of unique, spatially distinct ob-
jects indexed for retrieval.   

For demonstration purposes, we have indexed the original 39,200 segments in one 
descriptive dataset, and the 4,810 sub-regions in another dataset.  Fig. 9 shows an 
example retrieval of several cover types at the image segment level.  In the figure, 
each of the images in the left-hand column represents a query.  The remaining five 
images in each row represent the top five matching results of the query for an indus-
trial complex in (a), suburban area in (b), an agricultural area in (c), and a specific 
search for striped parking lots and roadways in (d).  Note the flexibility of the system 
to locate imagery of an extreme variety of cover types and detail using only eight 
features (from the original 140).  

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

 

Fig. 9.  Examples of the retrieval of image segments. The query images are in the left column. 
(a) an industrial complex, (b) a suburban setting, (c) agriculture, and (d) striped pavement. 
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(a)

(b)

(c)

(a)

(b)

(c)

 

Fig. 10. Examples of the retrieval of geospatial clusters. (a) An industrial complex, (b) a large 
expanse of deciduous forest, (c) an agricultural region. 

Although this type of segment-level query can be useful to an analyst, it can also 
provide too much redundant information regarding large spatial extents of visually 
similar imagery.  For example, forested or agricultural regions may occupy a large 
percentage of the data library in a rural region such as this.  An ability to collect to-
gether these large geospatial regions, or alternatively, to search for small man-made 
structures of a particular type distributed throughout large contiguous rural areas (i.e., 
a needle in a haystack) would also be useful.  Therefore, in Fig. 10, we show exam-
ples of three queries performed on the geospatially clustered regions of the image 
library.  Once again, the query region is represented by the left most column of im-
ages. In (a) we see an industrial complex, in (b) a large deciduous forest region, and in 
(c) an example of large, contiguous agriculture areas.   

5   Conclusion 

In this paper we have presented a novel method for automated feature extraction, 
spatial clustering, and indexing of a large geospatial image library.  Although retrieval 
experiments were described for a relatively small geospatial data set, the system ar-
chitecture and processing methodology have been developed to facilitate very large 
data libraries that can be maintained and updated in a dynamic manner through dis-
tributed computing with a software agent architecture.  The feature analysis and in-
dexing approach used in this research provides an efficient and flexible method for 
describing a broad range of cover types while allowing a user to locate very specific 
structural detail in a query-by-example environment. Future work in this area includes 
the incorporation of other geographical information metadata into the query process 
along with the addition of spectrally-based features for augmenting the specificity of 
local searches within a geospatial region of interest.  
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