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Abstract

This paper presents an efficient method for
fractional delay filter generation for
frequency-domain beamformers. A common
misunderstanding regarding frequency-
domain beamforming is that any fractional
time shift can be achieved using the delay
property of the discrete Fourier transform
(DFT). Blind application of the DFT delay
property introduces circular convolution
errors that may adversely affect the beam’s
time series. The method presented avoids
these errors while enabling real-time
processing.

L. Background

The beam pattern is the magnitude response
of a spatial filter produced by summing the
output signals from all sensors in an array.
This filter response is characterized by a
main lobe and several sidelobes. The main
lobe is often referred to as the passband or
maximum response axis (MRA) of the filter
response [1]. Beamforming may be defined
as the process of changing the MRA of the
array response using the weighted delay-and-
sum beamformer equation given by [2]

M

b(nT) =Y w,x(nT-nT), (1)

i=1

where b(nT ) is the time series beam, X, (n7)

is the output signal of the i-th sensor, M is
the number of sensors, 7 is the temporal

sampling interval, and w_denotes the shading

coefficient for the i-th sensor. Each time
shift, n;, is selected on the basis of the
desired MRA. Because the signals from the
sensors are sampled, the achievable time
shifts are limited to a set of quantized delays.
Consequently, the number of achievable
MRA steering directions is also limited.

The number of achievable steering directions
is increased by increasing the sampling
resolution [1]. Because of the large amount
of data produced by a sensor array, the most
efficient method of increasing the sampling
resolution is the generation of fractional
samples. Interpolation beamforming is a
technique that uses multirate digital signal
processing to effectively increase the
physical sampling frequency by a factor of L
in order to increase the number of achievable
steering directions [1]. The interpolation
beamformer equation is given by

b(nT):iw,.x,.l:nT—(ni +LZL)T], 2)

where m; is an integer from O to L - 1 and
m/L is the fractional delay required for the i-
th sensor.

In the literature, the concept of fractional
time shifts is traditionally approached from
the time-domain beamforming perspective.
Although the most intuitive approach, time-
domain beamforming is not always the
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preferred method. A technique that is
becoming more feasible for real-time
applications with the progress in high-speed
computing is frequency-domain
beamforming. Frequency-domain
beamforming offers some computational
advantages over the time-domain approach,
particularly when an application calls for
simultaneous production of multiple beams.
Regardless of the implementation, the need
for fractional sample generation exists. The
purpose of Section II is to examine the
interpolation beamformer from a frequency-
domain perspective.

II. Fractional Delay Generation Using
DFT Delay Property

Frequency-domain beamforming is a term
that describes algorithms that involve the use
of the fast Fourier transform (FFT) as part of
the beamforming process. Perhaps the most
widely used algorithm for discrete time
applications is the FFT beamformer. A
diagram illustrating the production of a
single beam using an FFT beamformer is
given in Figure 1. Following the production
of each sensor's discrete frequency spectrum,
the weighted delay-and-sum beamforming
operation defined by Eq. (1) is accomplished
by a shift and sum operation given by

P(k) = fH (k) (k)

k=0,1,. N-1

: ©)

where N is the length of the FFT. A
common approach to FFT beamforming is to
define Hi (k[; [3] as

HE)=weaf -j2mk %) @

where 7;is the time shift in samples required
for the i-th sensor given by [1]

Ti= [(r i.u)];irmf'u)] ’ (%)

where r; is the position of the i-th sensor, I
is the position of the reference sensor, u is

the beam steering direction, f; is the sampling
frequency, and c is the speed of propagation.

While apparently a straightforward
application of the DFT delay property, Eq.
(4) will produce errors if applied as shown in
Figure 1. Consider the case in which 7; is a
purely integer delay ;. In this case,
substituting Eq. (4) into Eq. (3) circularly
shifts the time series of the i-th sensor. Asa
result, the time series beam output from the
inverse FFT will contain discontinuities.
These discontinuities can be eliminated with
the overlap-save method [1]. The amount of
overlap required for the i-th sensor is
determined by the length of the filter, hi(n).
In Eq. (3), the multiplication of Xi(k) by the

linear phase term corresponds to convolution
of x{(n) with a finite length filter having an

impulse response defined by
h(n)=6 [n-(a,@N)], ©

where @ is the modulo operator. Thus, the
amount of overlap required to eliminate
circular convolution in the i-th sensor due to
the integer shift is a;.

Using Egs. (3) and (4) coupled with overlap-
save processing is equivalent to generating
the integer time shift portion of the
interpolation beamformer; however, the use
of Eq. (4) for generating fractional sample
delays causes distortion in y(n). A
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Figure 1. FFT beamformer structure for producing single beam [3].

fractional value for 7; in Eq. (4) produces an
impulse response given by [4]

i) sin (- )]
I PRE RS
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mﬂwﬁ‘

which is complex and nonzero for all values
of n. Thus, circular convolution effects
cannot be completely eliminated regardless
of the amount of overlap [4]. Section III
describes a method to properly generate
fractional sample delays.

ITI. Delay Filter Generation

The time shift, 7;, consists of an integer
component and a fractional component.
Based on these components, H, (k) can be
synthesized using a combination of storage
and computation. A diagram illustrating this
algorithm is shown in Figure 2. In this
scheme a time shift for the i-th sensor, 7;, is
computed using Eq. (5). This time shift is
then partitioned into an integer and fractional
component according to

Idelax:Lz;ﬁ+NJ

: (8)
Fdelay = 7 fs— ([delay,. - N)

These components are used to compute

pointers into large data stores containing the

integer and fractional delay filters.

A. Fractional Delay Generation

The Fractional Delay Filters store contains
the DFT representation of finite impulse
response (FIR) filters that implement the
fractional delays:

=L p=012.L-1. 9)

~Io

FIR filters eliminate the effects of circular
convolution when used with overlap-save
processing. The windowing method is used
to design FIR filters with the delays given by
Eq. (9). The object of the windowing
method of FIR filter design is to approximate
the ideal delay filter with a finite number of
points. This approximation is accomplished
by multiplying the ideal response by a
window function, as shown in Eq. (10):

hfrac (n,rp ) = w(n,rp )hideal (n, I“p )
(10)
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Figure 2. Algorithm for Generating Delay Filters.
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The impulse response for the ideal filter that 1(k), = exp( N ) (13)
generates rp 15 grven by pP= 0, 1, . .(pcon - 1), 2(pcon - 1), oo Pmax
sin| 77 (” -1, ) is stored. peon is the number of consecutive
‘ = ‘ 11 ' i
hideal (n,l"p ) zln-T, (an delays and p mex is the number of the last
filter required. The composite integer delay

filter is given by
(k) (14)

The window function, w(n,Fp ), is an /-point
p2°

Hamming window given by Hint(k, Idelay) = I (k)ﬂ

(L, )= l0.54+0.46cosli£;r'ljl 1-T,sn<I+T, where
0 otherwise
B. Integer Delay Generation For Idelay, <0, the integer delay filter is
given by
Unlike the fractional delay filters, all integer
Hint(k,[delayi) = Hint(k, N +[de1ay,.) :
(16)

delay filters required are not stored; instead,
a set of basis integer delay filters given by
Therefore, the composite filter that best
approximates the delay exp( jan;) is given by



H,(k) = Hint(k, Idelax)Hﬁac(k,r[LFdelaM)
(17)

IV. Memory Requirements

The method presented in Section IIT
provides significant improvement in required
data storage. If every integer delay is stored,
the amount of storage required for the
integer and fractional delays is (N +L)N

complex words. This storage requirement
would have exceeded the available 16 MB of
memory in the array processor used for this
application. Using the method in Section III,
all possible integer delays are obtained by a
single complex vector multiplication.
Splitting the integer delays in this manner
results in a substantial memory storage
savings. This technique requires Q sets of
filter coefficients, where Q is given by

o pes | L=l

DPeon
(18)

Solving for the minimum value of Q yields
Qi [2/N+1-1). (19)

Thus, the required storage space is reduced
by a factor of F, where F is given by

__ (v+1)
2dN+1-1+L"

(20)

For N >> L, the required storage space is
reduced by approximately JN /2.

V. Summary

This paper presents a method for generating
phase shifts for frequency-domain

beamformers. The method utilizes the
concept of fractional and integer delays to
achieve the desired phase shift. The
fractional delay component is produced by
using FIR delay filters which are computed
and stored prior to starting the beamformer.
The use of FIR delay filters produces phase
shifts without the circular convolution errors
caused by blind application of the DFT delay
property. The integer delays are produced
efficiently by combining storage and
computational resources. A base set of
integer delays is generated and stored. From
this set, all integer delays for a given FFT
size are obtainable with a single complex
vector multiplication. This compromise
between memory storage and computation
enables real-time frequency-domain
beamforming operations.
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