

Automated Feature Generation in Large-

Scale Geospatial Libraries for Content-Based

Indexing

Kenneth W. Tobin1*, Budhendra L. Bhaduri2, Eddie A. Bright2, Anil Cheriyadat2,

Thomas P. Karnowski1, Paul J. Palathingal3, Thomas E. Potok3, Jeffery R. Price1

1Image Science and Machine Vision Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6010
{Tobinkwjr, Karnowskitp, Pricejr} @ornl.gov

http://www.ornl.gov/sci/ismv
2Geographic Information Science and Technology Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee

37831-6017
{Bhaduribl, Brightea, Cheriyadatma} @ornl.gov

http://www.ornl.gov/sci/gist/gisthome.html
3Applied Software Engineering Research Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6085

{Palathingalp, Potokte} @ornl.gov
http://www.epm.ornl.gov/~v8q/

This paper reviews a method for feature analysis, segmentation, and indexing for region-based

management, retrieval, and datamining of large, high-resolution geospatial libraries.

*Prepared by Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

 2

Automated Feature Generation in Large-Scale Geospatial

Libraries for Content-Based Indexing

Abstract

We describe a method for indexing and retrieving high-resolution image regions in large geospatial data

libraries. An automated feature extraction method is used that generates a unique and specific structural

description of each segment of a tessellated input image file. These tessellated regions are then merged

into similar groups, or sub-regions, and indexed to provide flexible and varied retrieval in a query-by-

example environment. The methods of tessellation, feature extraction, sub-region clustering, indexing, and

retrieval are described and demonstrated using a geospatial library representing a 153 km2 region of land in

East Tennessee at 0.5m per pixel resolution.

1. Introduction

Large geospatial data libraries of remote sensing imagery are being collected today in higher resolution

formats both spatially and spectrally and at an unprecedented rate. These libraries are being produced for

many applications including hazard monitoring, drought management, commercial land use planning,

estuary management, agricultural productivity [1], forestry, tropical cyclone detection, homeland security,

and other intelligence and military applications [2, 3]. While these systems do provide end-users with

useful geographic information data products, it is typically required that a user know precise information in

a world-oriented dataset regarding a region of study if they are to achieve effective results.

Techniques that facilitate search and retrieval based on image content, for example in a query-by-example

environment, can provide an analyst or researcher with a rapid method for searching very large geospatial

libraries with minimal query specification. Content-based image retrieval (CBIR) refers to techniques used

to index and retrieve images from databases based on their pictorial content [4, 5]. Pictorial content is

typically defined by a set of statistical or semantic features extracted from an image to describe the spectral

 3

content, texture, and/or shape of the entire image or of specific image regions. Region-based image

retrieval is referred to as RBIR [6]. The literature contains many descriptions of systems for analyzing and

accessing geospatial libraries. The systems that are most relevant to our method are described below.

Other than these systems that consider content-based indexing of geospatial image information, most of the

reported systems describe system evaluation methods, distribution architectures, and system interfaces that

invoke classical geographical information system data, i.e., the metadata of a GIS library, not the content of

the imagery that is provided from satellite and airborne image capture systems [7]. Some of these systems

attempt to incorporate a combination of object detection and classifications to develop semantic

information regarding the relationship between these objects and user needs [8]. Other papers describe

specific details of the sub-elements of a retrieval system, e.g., the comparison of various similarity

measures used [9], or the performance of a previously developed system [10].

In a geospatial library environment, searches generally produce results such as the fraction of queried cover

type existing in a defined region, e.g., describing the coverage of city, urban, forest or crop type. Many

CBIR methods for geospatial data attempt to produce a description of image primitives at the pixel level,

e.g., based on local neighborhood structures, textures, or spectral content. Schroeder, et al., in Ref [11]

describes an index based on pre-extracted content using pixel primitives. The authors demonstrate their

method on Landsat Thematic Mapper (TM) and other data types that have coarse resolution (e.g., 30m per

pixel) and their system uses a Bayesian-based method for probabilistic retrieval. Datcu, et al., in Ref [6]

present a prototype concept for a content-based information mining system. Once again, the data presented

is coarse (i.e., relatively low spatial content per pixel) and pixel-based primitives (i.e., features) are

extracted for cover-type classification. While this method does describe a measure of local texture using

stochastic models, the Landsat TM data does not provide the high spatial detail that we wish to consider.

Stefanidis, et al., in Ref [12] and Agouris, et al., in Ref [13] describes a sketch-based image retrieval

environment that moves away from the CBIR concept of indexing based on inherent texture or structural

features (which are typically scale-dependent) and instead incorporates a drawing method that searches the

database for edge primitives with similarity to the sketch, e.g., a sketch of an airplane used to locate similar

structures on the ground. While this method moves away from the requirement of an “index image”, i.e.,

 4

the initial image required to begin a search in a query-by-example system, it also does not allow for pre-

indexing of image content since structures are located through a template matching procedure with the

sketch. Although the method can be described as reasonably scale-independent (i.e., the scale being

specified through the sketch), the intense processing requirements in template matching and the inability to

generalize the search process across the data system limits the technique.

As the resolution of new imaging sources improves with new imaging platforms, the ability to

automatically identify cover types – or more importantly structural details - by classifying pixels or local

textures becomes problematic due to the highly-resolved, man-made and natural structures that are present

in complex spatial arrangements. Spectral band and local pixel neighborhood content techniques (e.g.,

commonly used for texture feature description [14]) do not adequately account for the increased structural

information that resides in higher-resolution imagery. Methods that have relied on coarser image content in

the past must be modified or newly developed to optimally take advantage of increasing detail, i.e., they do

not readily scale with resolution.

Fig. 1 demonstrates this point through several examples of the high-resolution imagery that will be used

throughout this discussion. The indicated image regions represent a wide variety of cover types ranging

from mixed deciduous and conifer forest lands to urban and industrial settings. At these resolutions and

with the complex proximities of the various man-made and natural structures, it is difficult to apply pixel

classification methods to segment image content. In general, pixel-based methods will result in many

mixtures of discontinuous regions and ambiguity at the boundaries of different structural regions in the

imagery.

At the Oak Ridge National Laboratory (ORNL) we are developing methods to automatically describe these

region types in high-resolution imagery so that a large image library can be efficiently assembled and

indexed to perform content-based retrievals that will accommodate searches for specific spatial structure.

This system encompasses three main development areas: (1) a software agent architecture to support

distributed computing and to gather image content and metadata from the web, (2) a geospatial data

 5

modeling component to register the imagery in a consistent world-coordinate system, and (3) a RBIR

component to index imagery for search and retrieval. In this paper we will focus primarily on the RBIR

aspects of search and retrieval. In Section 2 we give a brief overview of the architecture of the archive

generation system that has been developed. In Section 3 we review the critical components of our image

region description and indexing approach. In Section 4 we describe the indexing methods used and the data

structures that are developed to facilitate efficient storage and access. Finally, in Section 5 we present and

discuss results obtained using the data set partially represented by Fig. 1, a total indexed land area of

approximately 153 km2 (59 mi2) at 0.5m per pixel resolution.

2. Overview of System Architecture

At ORNL we have developed a system and architecture by combining novel approaches from three distinct

research areas: software agents, georeferenced data modeling, and content-based image retrieval. The

resulting technology represents a comprehensive image data management and analysis system. This

system allows us to meet the challenges of organizing and analyzing large volumes of image data, and of

automating the image consumption process to populate the database. The overall system approach breaks

down into three components: (1) an innovative software-agent-driven process that can autonomously search

through distributed image data sources to retrieve new and updated information, (2) a geo-conformance

process to model the data for temporal currency and structural consistency to maintain a dynamic data

archive, and (3) an image analysis process to describe and index spatial regions representing various natural

and man-made cover types.

Fig. 2 represents the agent-based architecture of our design. There are five types of agents that are

represented in this system. The Coordination Agent controls the workflow between the different agents.

The Crawler Agent performs a depth-first search for image links on potential websites (in our case, only

URL’s ending with .edu, .gov and .net). The Download Agent downloads images for all the image links

generated by the Crawler Agent. The Download Agent coordinates with the image repository to ensure that

the image does not already exist in the repository or that the image is newer or has a higher resolution than

the existing one.

 6

The fourth type of agent is the Markup Agent. This type of agent creates XML files that have images

marked up with their properties and metadata. For each image in the repository, this agent extracts image

properties like height, width, bit planes, etc. In addition, this agent extracts geospatial information like the

images bounding box coordinates from the accompanying metadata/world file. After collecting this

information, it creates an XML file for each image in the image repository using all of the above-deduced

properties. The XML files are then stored in a separate XML Repository.

Finally the fifth agent type, Extractor Agents, perform preprocessing of the images. Typically each

Extractor Agent runs on a separate processor so that images can be processed in parallel. An image is first

segmented into block segments of size 128×128 pixels. Once the image segments are created, a feature

vector file describing each segment is created by making use of the image properties in the XML file and

the feature extraction methods described below.

To deploy this agent architecture, we used the Oak Ridge Mobile Agent Community (ORMAC) framework

[15]. This framework has been under development over the course of several agent-based research

projects. ORMAC is a generic agent framework providing transparent agent communication and mobility

across any Internet connected host [16].

The overall purpose of this agent system is to provide a comprehensive process for the continuous

gathering, description, indexing, and datamining of a dynamic, high-resolution geospatial library. The

remainder of this paper will focus primarily on the methods being developed for image feature description,

sub-region segmentation, and indexing, i.e., once the geographic data has been located and brought into the

system by the agent architecture.

3. Image Analysis

Once the imagery has been downloaded by the software agents, our goal is to generate a succinct

description of an image-dependent number of contiguous areas. Fig. 3 provides an overview of the process.

 7

Our approach begins with an image tile, for example of the size represented in Fig. 1. For this paper we are

using image tiles that are 3100x3100 pixels representing a size of 1,750m on a side.

The tiles are tessellated into 128×128 pixel segments corresponding to 64m × 64m area. The segment size

was determined heuristically by ensuring that various cover structure would be adequately represented in

each segment. Fig. 4 shows examples in clockwise order from the upper left of four cover types:

agricultural, forested, suburban, and industrial. A number of structure-oriented features are extracted from

each segment. These features are reduced using a PCA/LDA method [17] to provide a short-length vector

for segment clustering by a region growing procedure to organize similar segments into contiguous groups.

Each contiguous group represents a sub-region in the original image tile and a summary feature description

is generated for indexing. Also, the region boundary is run length encoded for efficient storage in the

database. Finally, an indexing tree is developed using the region features by application of an approximate

nearest neighbor (ANN) method as described in Section 4. The indexing tree provides O[log2(n)] retrieval

efficiency from the database through a query-by-example RBIR.

3.1. Feature Analysis

For this research, we have focused on features that measure the texture and structure of the image

segments. The spectral attributes of an image segment are also valuable and have been used by many

researchers to classify cover types in geospatial data [6, 11, 18]. But over large geospatial extents, spectral

information can unintentionally limit a query-based search to a confined region. This is demonstrated by

considering the Landsat TM data shown in Fig. 5 (30m per pixel resolution). Although we are not using

Landsat TM data for this study, the four regions show agricultural areas over a large geographical distance

and include Maine, Virginia, Tennessee, and Florida. Although the same three spectral bands were used to

visualize crop regions, the spectral content varies tremendously. The implication is that although it may be

straight-forward to locate other agricultural regions in Maine using a Maine-based query composed of

spectral features, it will be difficult to locate agricultural regions in Tennessee or Florida due to the

 8

variation in the spectral content. To avoid this unintentional bias in our indexing and retrieval process, we

have adapted two feature sets that rely primarily on edge information to describe texture and structure.

We characterize segment texture using local binary patterns (LBP) [19] and local edge patterns (LEP) [20].

In the rotation-invariant LBP texture operator, each 3×3 pixel neighborhood in the intensity image is

thresholded by the intensity value of the center pixel. As there are eight neighboring pixels, each of which

can be represented as a 1 or 0 (if above or below the center pixel value, respectively), it is evident that there

are 256 (28) possible patterns that can result from this thresholding. Since, however, we desire rotational

invariance, we note only those patterns that are unique under rotation. For example, the three patterns in

Fig. 6 are all (approximately) equivalent under rotation about the center pixel. Applying this equivalence-

under-rotation idea, it can be shown that there are only 36 unique patterns. This implies that every pixel in

the image can be assigned a number from 1-36 depending upon its LBP. The 36-bin normalized distribution

(i.e., histogram) of the LBP values in a given 128×128 image segment hence provides 36 features for that

region.

The LEP is computed almost identically to the LBP, except that we examine 3×3 pixel neighborhoods in

the image edge map rather than the image intensity values. When considering the edge map, we must also

consider the state of the center pixel, which is a 1 if the center pixel is an edge, or a 0 if not. This doubles

the number of potential patterns from 36 to 72 so that every pixel in the image can be assigned a number

from 1-72 depending upon its LEP. The 72-bin normalized distribution of the LEP values hence provides

72 features.

To characterize structure in a segment, we analyze the distribution of edge orientations. The motivation to

this approach is that man-made structures generally have regular edge features oriented in only a few

directions (usually two for buildings) while natural image regions have randomly oriented edges. Different

mixtures of man-made and natural structures will result in a variety of descriptions.

 9

We compute local image orientation at each edge pixel using steerable filters [21]. We then find the 64-bin

histogram of the edge orientation over angles from -90 to +90 degrees. The edge orientation distribution for

a man-made structure is shown in the top of Fig. 7 (a) and that for the natural image is shown in the bottom

of Fig. 7 (a). Note in the top of Fig. 7 (c) that there are two peaks in the edge orientation distribution near -

80 degrees and +10 degrees that correspond to the orientations of the building. The distribution for the

natural scene in the bottom of Fig. 7 (c) however, is approximately uniform. Since we require that the

stored features be invariant to rotations of the source image, we next take the discrete or fast Fourier

transform of the 64-point edge orientation histogram and keep the magnitude of the first 32 points as the

final features. The magnitude of the DFT or FFT is invariant to circular shifts of the data.

The total number of texture and structure features used at this point is therefore 140 (i.e., 36+72+32).

Subsequent to the feature extraction step we apply a PCA and LDA process that results in a reduction from

140 to 8 features per image segment. These features are the basis of geospatial clustering and indexing for

search and retrieval.

3.2. Geospatial Clustering

Once the features of the image segments have been extracted, it is possible to use this feature vector as an

index for retrievals. Since there are generally a large number of contiguous 128×128 segments that define

a content-based region (e.g., forested, suburban, etc.), we seek to group neighboring segments with similar

features together to form a sub-region within an image tile or tiles. We perform a geospatial clustering

procedure using a region growing technique to connect large contiguous and homogeneous segments of

similar structure and texture characteristics.

Region growing is initialized by randomly selecting a seed segment at location (x,y), where (x,y) designates

a coordinate of the corner or centroid of a segment. A segment with feature vector v(x,y) is merged with a

neighboring segment with feature vector v’(x±1, y±1), or with a segment group with mean vector <v’> if,

 10

- the coordinate of the neighboring segment or of the closest segment group is an element of the

set {(x±1, y±1)},

- |v-v’| < T1 or |v-<v’>| < T1, where T1 is a user-specified threshold,

- the resulting variance, σ2, of the new segment group is less than T2, where T2 is a user-

specified threshold used to limit the variance.

The merging process is continued until all the segments in the image tile have been tested. A subsequent

step is then performed on this data to reevaluate smaller sub-regions for connectivity. During this second

stage, a region merging operation is performed to join independent segments to existing sub-regions if,

- the segment is spatially connected to one or more sub-regions (i.e, a sub-region being defined

as > 1 connected segment from the initial clustering pass)

- the feature vector distance, |v-<v’>|, between the segment and the sub-region is the lowest

among all of the independent sub-regions neighboring the segment, and,

- the resulting variance of the newly merged region does not exceed a user-defined threshold,

i.e., |σ2| < T3.

Once the contiguous segment regions have been determined, each segment group (image sub-region) has

16 descriptive features associated with it, i.e., each sub-region is described by vector w = (<f1>, <f2>, …,

<fN>…, σ1
2, σ2

2, …, σN
2)t, for N=8, where <fn> is the average of the n-th feature across the ensemble of

segments in that group, and σn
2 is the corresponding variance of that feature. It is this sub-region

description that is used for indexing and retrieval in the RBIR library. Fig. 8 shows typical results of this

merging process.

4. Database Indexing

The goal of indexing is to organize the image data (e.g., filenames, features, indexing codes, etc.) in the

database such that a ranked list of nearest neighbors can be efficiently retrieved in response to a query

without performing an exhaustive comparison to all the records in the database. For our RBIR system this

 11

is achieved by generating a binary decision tree of the image features, w, described above. A bin is defined

as a bottom-level element in our tree structure, sometimes described as a “leaf” or terminal node, that

contains a small list of images, e.g., a bottom-level bin may contain a list of image vectors {wa, wb, wc, …}.

Under our RBIR architecture, a query vector is compared at the top level to each of two sub-nodes and a

decision is made as to which sub-tree to take. There are many ways to implement decision trees. For this

work we have implemented an ANN indexing and search method that builds on kd-tree methods [22, 23].

Whereas an exhaustive nearest-neighbor search of the n vectors (i.e., images) in the database would be of

O(n) computations, the kd-tree approach is of O(log2(n)). This is explained through Fig. 9 that shows a

simple example of a two-dimensional feature space, (fx, fy), containing 18 image vector points partitioned

into a kd-tree structure where each bin, or leaf node, contains 3 points (i.e., image vectors). The kd-tree

method allows for the rapid retrieval of the closest bin to the query point, Q, but the data in this bin are not

necessarily the closest points and the nearest-neighbor result can be in error by an amount, ε.

The ANN method incorporates a search window that results in the collection of neighboring bins about the

query point. As this window increases in radius, the nearest neighbor error, ε, decreases, but the

performance of the system also decreases to O(n). The efficiency of the ANN method is proportional to

O((1/ ε)N/2log(n)), where N is the dimension of the feature space, n is the number of data points (i.e.,

indexed regions in the system), and ε is the nearest neighbor error [22]. The nearest-neighbor error is

therefore inversely proportional to the size of the search window as shown in Fig. 9. As the radius of the

search window increases, neighboring bins containing additional image vectors are included in the final

nearest-neighbor search. As the radius continues to grow, the system approaches the complexity of an

exhaustive nearest-neighbor search. Therefore, the accuracy of the RBIR system is selectable as a trade-off

between nearest neighbor performance and computational efficiency. Through this approach we have

demonstrated retrieval efficiencies on the order of 5 seconds for 100,000 indexed images, which scales to

on the order of 15 seconds for a database of 1,000,000 images [23].

Once the image features and their corresponding bins in the kd-tree have been determined, the image data

structure is added to the database as shown schematically in Fig. 10. Each image tile in the data set is

 12

comprised of a previously undetermined number of sub-regions. In the database, a unique identifier, UIDn,

is assigned to each image sub-region (i.e., a segment cluster), following this is the path to the image tile in

which it resides, the run-length-encoded (RLE) boundary of the sub-region, and the set of features and the

bin code for the tree search. Also note in the figure that multiple sets of features and bin codes are

represented. With this RBIR architecture, we can easily append the system to include other sets of features.

For example, we may add spectral features to the query process or we may include other metadata

associated with the imagery to augment query flexibility. Fig. 11 shows this schematically in terms of a

Venn diagram. In our previous implementation of this system for industrial applications [23, 24], a query

is performed against each discrete category of features for which an independent indexing tree has been

generated. The returned vectors that overlap these sets (i.e., the reduced set representing the Boolean

intersection in Fig. 11) are concatenated and ranked for display relative to their distance from the query

vector, dn(Q,wn), where dn(Q,wn) = || Q - wn ||. A similarity value is determined based on this distance as

Sn(Q,wn) = 1-dn(Q,wn) / √N, where N is the dimension of the concatenated feature space and the metric

ranges from [0,1], with 0 being most dissimilar and 1 being most similar.

5. Results

The results presented here are for a geospatial library composed of 50 image tiles (3500x3500 pixels,

1750m×1750m, 0.5m per pixel) representing approximately 153 km2 of land in and around the U.S.

Department of Energy’s Oak Ridge Reservation [25, 26]. For this demonstration, the region (i.e., over all

tiles) was tessellated into 39,200 segments of size 128×128 pixels each. Features were then extracted for

each of the segments, which were subsequently clustered as described in Sections 3.1 and 3.2 above. The

number of sub-regions developed through geospatial clustering was 4,810, resulting in a reduction of 88%

in the number of unique, spatially distinct sub-region objects indexed for retrieval. Fig. 12 shows a

composite view of the entire geospatial library in (a) along with a representation of the sub-region

segmentation achieved through clustering of the image segments in (b). Note that many of the large,

contiguous areas of forest and water regions have been clustered, therefore reducing the complexity of the

database (e.g., through the reduction of the number unique indices that must be maintained) and the

simplification of the search environment for the user, e.g., by reducing the need to view many image

 13

segments of nearly identical content. Also note that the urban and industrial region types have maintained

higher granularity in the system. These clustered regions are typically smaller due to their more complex

and dissimilar structural content. This also benefits the user when a detailed search for subtle differences in

man-made structure is the query goal.

For demonstration purposes, we have indexed the original 39,200 segments in one descriptive dataset, and

the 4,810 sub-regions in another dataset, where each set could then be queried as independent systems and

compared. Fig. 13 shows an example retrieval of several different cover types at the image segment level.

In the figure, each of the images in the left-hand column of each row, (a) – (d), represents the query index.

The remaining five images in each row represent the top five matching results of the query for an industrial

complex in (a), suburban area in (b), an agricultural area in (c), and a specific search for striped parking lots

and roadways in (d). Note the generality and flexibility of the system to locate imagery of an extreme

variety of cover types and detail using only eight structure-based features (from the original 140).

Although this type of segment-level query can be useful to an analyst, it can also provide too much

redundant information regarding large spatial extents of visually similar imagery. For example, forested or

agricultural regions may occupy a large fraction of the data library in a rural region such as exists in this

dataset. An ability to collect together these large geospatial regions, or alternatively, to search for small

man-made structures of a particular type distributed throughout large contiguous rural areas (i.e., a needle

in a haystack) would also be useful. Therefore, in Fig. 14, we show examples of two queries performed on

the geospatially clustered regions of the image library, i.e., the second dataset. In these screen shots, the

query image is located in the upper left-hand corner of the display. In (a) we see the results of a query

based on an image sub-region of an industrial complex. The returned images are ordered in terms of

similarity, Sn(Q,wn), from left to right and top to bottom and range over the first 10 returned images from

92% to 85% similarity. In (b) we show the results of a query made using a large, contiguous deciduous

forest region. For this example, the similarity of the first 12 returned images ranges from 92% to 88%.

Notice the difference in geospatial extent of the results returned by each query. In the case of the industrial

complex query, the size of the average sub-region is around 12 segments, while the size of the forested sub-

 14

regions is in the hundreds of segments. This demonstrates the ability to query the library over both large

and small geospatial extents providing both filtering of large, similar ranges of cover type, and small

detailed regions of more complex man-nade structures. Also, note that the similarity between regions (of

any type) is a function of the structural properties of the entire sub-region and not the area or shape of the

sub-region. Although it is not clear that shape and area are relevant descriptive features for this system

today, these or other features could easily be incorporated into the system in the future according to our

discussion in Section 4 (e.g., see Fig. 11).

6. Conclusions

In this paper we have presented a novel method for automated feature extraction, spatial clustering, and

indexing of a large geospatial image library. The ability to describe broad structural content in high-

resolution imagery in a succinct format (i.e., 8 features) and cluster similar content to form large,

contiguous image sub-regions is the unique contribution of this work. Although retrieval experiments were

described for a relatively small geospatial data set (153 km2), the system architecture and processing

methodology have been developed to facilitate very large data libraries that can be maintained and updated

in a dynamic manner through distributed computing within a software agent architecture. The feature

analysis and indexing approach used in this research provides an efficient and flexible method for

describing a broad range of cover types while allowing a user to locate very specific structural detail in a

query-by-example environment. Future work in this area will include the incorporation of other

geographical information metadata into the query process along with the addition of spectrally-based

features for augmenting the specificity of local searches within a geospatial region of interest. Our

indexing procedure allows us to consider spatial relationships between sub-regions, which will also be

investigated to strengthen the query process. Finally, the infrastructure for detecting temporal changes is a

fundamental element of our architecture. In future work, we will take advantage of this system

characteristic to automate/assist in the detection of geospatial change.

7. References

 15

1. Moran, M.M., (2000), “Image-Based Remote Sensing for Precision Crop Management – A Status

Report,” Proceedings of Space 2002: the Seventh International Conference and Exposition on Engineering,

Construction, Operations and Business in Space, p. 185-193.

2. Tapley, B.D., et al., (2001), “A Vision for Creating Advanced Products From EOS Core System Data to

Support Geospatial Applications in the State of Texas,” International Geoscience and Remote Sensing

Symposium, Vol.2, p. 843-845.

3. You, J., et al., (2004), “On Hierarchical Content-Based Image Retrieval by Dynamic Indexing and

Guided Search,” Proceedings of SPIE, Storage and Retrieval Methods and Applications for Multimedia,

Vol. 5307, p. 559-570.

4. Santini, S., (2001), Exploratory Image Databases, Content-based Retrieval, Academic Press, San

Fransisco, CA.

5. E. Vicario (1998), Editor, Image Description and Retrieval, Plenum Press, New York, NY.

6. Datcu, M., et al., (2003), “Information Mining in Remote Sensing Image archives: System Concepts,”

IEEE Trans. On Geoscience and Remote Sensing, Vol. 41, No. 12, Dec. 2003, p. 2923-2936.

7. Hsu, R.C., et al., (2004), “A Mobile Agent Based Image Retrieval and Delivery System for Remote

Sensing Satellite,” Proceedings of the SICE, SICE Annual Conference, p. 2227-2232.

8. Grant, C.W., (2004), “Data Structures and Algorithms for Graph Based Remote Sensed Image Content

Storage and Retrieval, IEEE International Geoscience and Remote Sensing Symposium, Vol. 3, p. 2159-

2162.

9. Bao, Q., et al., (2004), “Comparative Studies on Similarity Measures for Remote Sensing Image

Retrieval,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Vol. 1, p.

1112-1116.

10. Daschiel, H., et al., (2005), “Information Mining in Remote sensing Image Archives: System

Evaluation,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 1, p. 188-199.

11. Schroder, M., et al., (2000), “Interactive Learning and Probabilistic Retrieval in Remote Sensing Image

archives,” IEEE Trans. on Geoscience and Remote Sensing, Vol. 28, No. 5, Sept., p. 2288-2298.

 16

12. Fritsch, D., et al., (1998), “Sketch-Based Image Retrieval in an Integrated GIS Environment,” ISPRS

Commission IV Symposium on GIS – Between Vision and Applications, Germany, Vol. 32/4.

13. Agouris, P., et al., (1999), “An Environment for Content-Based Image Retrieval from Large Spatial

Databases,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 54, p. 263-272.

14. Newsam, S., et al., (2004), “Using Texture to Analyze and Manage Large Collections of Remote

Sensed Image and Video Data,” Applied Optics, Vol. 43, No. 2, p. 210-217.

15. Potok, T., et al., (2003), "VIPAR: Advanced Information Agents Discovering Knowledge in an Open

and Changing Environment," Proc. 7th World Multiconference on Systemics, Cybernetics and Informatics,

Orlando FL, pp. 28-33, July 27-30.

16. Yang, Y., et al., (2000), “A Mobile Agent-Based Architecture fro On-Demand Processing of Remote-

Sensing Archive,” Proc. Of the 4th International Conference on High-Performance Computing, IEEE

Computer Society Press, p. 538-541.

17. Bingham, P.R., et al., (2004), “Semiconductor Sidewall Shape Estimation,” SPIE Journal of Electronic

Imaging, Vol. 13, No. 3, July.

18. Harvey, N.R., et al., (2002), “Comparison of GENIE and Conventional Supervised Classifiers for

Multispectral Image Feature Extraction,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 40,

No. 2, Feb., p. 393-404.

19. Pietikainen, M., et al., (2000). “Rotation-invariant texture classification using feature distributions,”

Pattern Recognition, Vol. 33, No.1, pp. 43-52.

20. Yao, C.-H. and Chen, S.-Y., (2003), “Retrieval of translated, rotated and scaled color textures,” Pattern

Recognition, Vol. 36, pp. 913-929, No. 4.

21. Freeman, W. and Adelson, E. (1991), “The design and use of steerable filters,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 13, No. 9, pp. 891-906.

22. Arya, S., et al., (1994), “An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed

Dimensions”, Proc. of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 573-582.

 17

23. Tobin, K. W., et al., (2002), “Content-based Image Retrieval for Semiconductor Process

Characterization”, EURASIP Journal on Applied Signal Processing, Special Issue on Applied Visual

Inspection, Vol. 2002, No. 7.

24. Bingham, P.R., et al., (2004), “Semiconductor Sidewall Shape Estimation,” SPIE Journal of Electronic

Imaging, Vol. 13, No. 3.

25. Tuttle, M., and Pace, P., (1996), “ORNL Basemapping and Imagery Project: Data Collection,

Processing, and Dissemination,” Geographic Information System (GIS) Environmental management

conference, Reno, NV, CONF-9603148-1.

26. Tiled Data Based Dictionary (1998), OREISE Base Mapping Project, Oak Ridge Environmental

Information System, http://www-

oreis.bechteljacobs.org/oreis/help/oreishome.html

 18

Figure Captions

Fig. 1. Examples of a wide variety of spatial data regions that may exist in a large geospatial image

database including, (a) forest, (b) agriculture, (c) water structure (locks, dams, etc.), (d) urbanized

area, and (e) industrial sites. The resolution of these scenes are 0.5m per pixel.

Fig. 2. Schematic representation of the agent architecture.

Fig. 3. Process flow shows tessellation of the input tile, feature extraction, segment clustering,

indexing, and database building for query-based search and retrieval.

Fig. 4. Example image segments representing four cover types.

Fig. 5. Examples from the Landsat Thematic Mapper showing variation in spectral response across

large geospatial extents. Three of six spectral bands have been selected for display that emphasize

variations in crop cover. (UL) Maine. (UR) Virginia. (LL) Tennessee. (LR) Florida.

Fig. 6. Three local binary patterns (LBP) that are equivalent under rotation about the center pixel.

Fig. 7. (a)Image segment, (b) edge map, and (c) edge orientation of (b). The top row represents a

man-made structure and the bottom row a natural scene.

Fig. 8. Region growing results across three tiles from the image library. Each bordered region

represents one homogeneous, connected group of segments as determined by their texture and

structure features.

 19

Fig. 9. An example of a simple feature space showing a kd-tree bin structure for an ANN search

region about a query point, Q.

Fig. 10. Schematic diagram of database structure for the RBIR system.

Fig. 11. Diagram showing the search relationship between feature categories and metadata in the

RBIR system.

Fig. 12. Composite image in (a) of the 50 image tiles comprising the 153 km2 geospatial library. The

composite in (b) shows the 4,810 sub-regions determined by spatial clustering the original 39,200

segments.

Fig. 13. Examples of the retrieval of image segments. The query images are in the left column. (a)

an industrial complex, (b) a suburban setting, (c) agriculture, and (d) striped pavement.

Fig. 14. Examples of the retrieval of geospatial clusters. (a) An industrial complex, (b) a large

expanse of deciduous forest, (c) an agricultural region.

 20

Fig. 1

download images

images and metadata
(XML) database

image
downloading
agents

coordination
agent

crawler agents

crawl
for

links

extract
image
links

I
N
T
E
R
N
E
T extractor agents

(image analysis)

markup
agent

download images

images and metadata
(XML) database

image
downloading
agents

coordination
agent

crawler agents

crawl
for

links

extract
image
links

I
N
T
E
R
N
E
T extractor agents

(image analysis)

markup
agent

Fig. 2

(a) (b) (c) (d) (e)

 21

software agents
bring in image
tiles from a
region

tessellate tile
into segments

extract
segment
features

perform feature-
based clustering

generate
region
features

run-length
encode
region
boundaries

develop ANN
indexing tree

build tables
for database

software agents
bring in image
tiles from a
region

tessellate tile
into segments

extract
segment
features

perform feature-
based clustering

generate
region
features

run-length
encode
region
boundaries

develop ANN
indexing tree

build tables
for database

software agents
bring in image
tiles from a
region

tessellate tile
into segments

extract
segment
features

perform feature-
based clustering

generate
region
features

run-length
encode
region
boundaries

develop ANN
indexing tree

build tables
for database

Fig. 3

Fig. 4

 22

Fig. 5

Fig. 6

1

1

0 0

0

00

0

0

0

1 0

0

00

1

1

0

0 1

0

00

0

 23

Fig. 7

Fig. 8

(a) (b) (c)

 24

fx

fy

∼1/ε Q

bin structure

fx

fy

∼1/ε Q

fx

fy

∼1/ε Q

bin structure

Fig. 9

UID0 , <path1>, RLE boundary (R1), {gstructure, bin}, {gother, bin}, …
UID1 , <path1>, RLE boundary (R2), {gstructure, bin}, {gother, bin}, …
UID2 , <path1>, RLE boundary (R3), {gstructure, bin}, {gother, bin}, …
UID3 , <path1>, RLE boundary (R4), {gstructure, bin}, {gother, bin}, …

UID4 , <path2>, RLE boundary (R1), {gstructure, bin}, {gother, bin}, …
UID5 , <path2>, RLE boundary (R2), {gstructure, bin}, {gother, bin}, …
UID6 , <path2>, RLE boundary (R3), {gstructure, bin}, {gother, bin}, …

Feature list and indexing bin code for
each category (i.e., index into search
tree)

image
tile

image
tile

UID0 , <path1>, RLE boundary (R1), {gstructure, bin}, {gother, bin}, …
UID1 , <path1>, RLE boundary (R2), {gstructure, bin}, {gother, bin}, …
UID2 , <path1>, RLE boundary (R3), {gstructure, bin}, {gother, bin}, …
UID3 , <path1>, RLE boundary (R4), {gstructure, bin}, {gother, bin}, …

UID4 , <path2>, RLE boundary (R1), {gstructure, bin}, {gother, bin}, …
UID5 , <path2>, RLE boundary (R2), {gstructure, bin}, {gother, bin}, …
UID6 , <path2>, RLE boundary (R3), {gstructure, bin}, {gother, bin}, …

Feature list and indexing bin code for
each category (i.e., index into search
tree)

image
tile

image
tile

Fig. 10

 25

fu
tu

re

texture /
structure

spectral

Q

fu
tu

re

texture /
structure

spectral

QQ

Fig. 11

 26

1750m x 1750m

21 km

(a) (b)

12.25 km

1750m x 1750m

21 km

(a) (b)

12.25 km

Fig. 12

 27

Fig. 13

(a)

(b)

(c)

(d)

 28

(a)

(b)

(a)

(b)

Fig. 14

