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and modular subspaces
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Abstract

We present a modular linear discriminant analysis (LDA) approach for face recognition. A set of observers is trained
independently on different regions of frontal faces and each observer projects face images to a lower-dimensional subspace.
These lower-dimensional subspaces are computed using LDA methods, including a new algorithm that we refer to as direct,
weighted LDA or DW-LDA. DW-LDA combines the advantages of two recent LDA enhancements, namely direct LDA (D-
LDA) and weighted pairwise Fisher criteria. Each observer performs recognition independently and the results are combined
using a simple sum-rule. Experiments compare the proposed approach to other face recognition methods that employ linear
dimensionality reduction. These experiments demonstrate that the modular LDA method performs significantly better than
other linear subspace methods. The results also show that D-LDA does not necessarily perform better than the well-known
principal component analysis followed by LDA approach. This is an important and significant counterpoint to previously
published experiments that used smaller databases. Our experiments also indicate that the new DW-LDA algorithm is an
improvement over D-LDA.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Despite the availability of commercial systems, face
recognition continues to be an active topic in computer
vision research. Current face recognition systems perform
well under nearly ideal circumstances, but tend to suffer
when variations in expression, illumination, decoration (i.e.,
glasses, facial hair), and/or pose are present. Most current
face recognition research aims to improve recognition per-
formance in the presence of such confounding factors. Face
recognition methods can be classified broadly into two
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categories: feature- or template-based, as described in Ref.
[1]. The research presented in this paper is a template-based
approach where the image pixels themselves serve as the
features. Below we survey the research that has motivated
our work. We note that there are other confounding fac-
tors (aging and/or drastic weight change, for example) that
are beyond the scope of our interest. Furthermore, there are
many other interesting and effective face recognition ap-
proaches that are not related to this work. A few examples
include elastic bunch graph matching[2], support vector
classification[3], morphable models[4], and light-fields[5];
certainly, the interested reader can find many more.

Illumination: Approaches for dealing with varying il-
lumination are primarily based upon linear discriminant
analysis (LDA), sometimes referred to as “Fisherfaces”
[6–8]. A motivating principle behind these techniques is the
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approximation of a face as a Lambertian surface. As noted in
Ref. [6], the images of a Lambertian surface under varying
illumination lie in a linear subspace of the entire image space
and, under ideal conditions, are linearly separable.

Expression: Varying facial expression can be modeled to
some degree by the active appearance models (AAMs) pre-
sented in Ref.[9]. AAMs characterize shape and texture
information using a statistical point distribution approach.

Illumination and expression: Bayesian face recognition
[10–12] has been proposed to improve robustness in the
presence of varying illumination and expression. These ap-
proaches employ probabilistic models to characterizeintra-
personal and inter-personaldifferences with a principal
component analysis (PCA) or “eigenface” representation.
In Ref. [10], it is noted that the Bayesian approach can be
thought of as a general, non-linear extension of LDA. With
this in mind, it seems a reasonable hypothesis that LDA
should also be able to address both illumination and expres-
sion to some degree. Recent research[13] has demonstrated
this hypothesis to be true.

Facial decoration: There has been very little work to-
wards explicitly handling facial decoration. In Refs.[12]
and[14], it was shown that two “eigenfeature” images—the
eyes and the nose—could be used for accurate recognition
after a change in facial hair. However, no method for online
selection of the appropriate eigenfeatures was suggested. In
the LDA approach described in Ref.[7], some promising re-
sults were obtained after artificially degrading face images,
indicating that LDA might also provide a reasonable solu-
tion to handling some degree of decoration, assuming that
the registration landmarks can still be located (i.e., no oc-
clusions of landmarks such as dark glasses hiding the eyes
or scarves covering the mouth).

Pose: One method to handle varying pose is the view-
based eigenspace approach[14], which was recently shown
to perform quite well[15]. Each pose is represented by its
own subspace and the multiple subspaces act as indepen-
dently trained “experts” or observers trying to explain the
data. Similarly, motivated techniques include characteristic
eigenspace curves[16] and view-based AAMs[17].

Pose and expression: AAM methods[17,18] have been
proposed to handle both varying pose and expression.

Pose and illumination: Methods were presented in Refs.
[19] and [20] to deal with varying pose and illumination.
These methods rely upon generative models that can synthe-
size a given face under varying illumination from different
viewpoints. Although the performance in Ref.[19] is quite
remarkable, the proposed method employs seven training
images for each subject under strictly controlled lighting
and does not address expression or decoration.

The research presented in this paper is motivated by the
goal of personnel monitoring in critical spaces of secure
facilities. In these situations, we will need to recognize be-
tween 100 and 150 people and will have access to good train-
ing data. Variations in illumination, expression, and decora-
tion (particularly eyeglasses) are expected. Since access to

the spaces in question is generally well- controlled and mon-
itored by video cameras, the acquisition of frontal images is
relatively easy compared to less controlled situations, hence
pose variation issues are minimal. With all of these facts in
mind, we now note the specific contributions of this paper.

• We propose a modular LDA face recognition algorithm,
which is an improvement over the modular PCA ap-
proach. Through careful analysis of previous research,
our approach explicitly aims to address three of the four
confounding factors, namely illumination, expression,
and decoration. None of the algorithms presented above
addresses more than two confounding factors. Assum-
ing an accurate pose estimator (a subject of ongoing
research) and adequate training data, we believe the
extension of the proposed system to variable pose is
straightforward, as discussed briefly in Section 3.4.

• We propose a new LDA algorithm called direct, weighted
LDA (DW-LDA) that simultaneously provides the ad-
vantages of both direct LDA[21] and weighted pairwise
Fisher criteria[22]. A point of significant interest is that
we find experimentally that the direct LDA methods do
not perform as well in terms of classification accuracy
as PCA plus LDA methods. This is in contrast with ear-
lier results in the literature[21]. The direct LDA meth-
ods do, however, provide the means to perform subspace
computation when there is abundant training data (i.e.,
no small sample size problem) and many subjects, where
PCA might be computationally intractable due to the
dimensionality of the full rank covariance matrix. For
example, if we had 1000 subjects and 10,000 training
images of 10,000 pixels each, PCA would require the
eigen-decomposition of a 10,000× 10,000 matrix. D-
LDA and DW-LDA, however, would only require the
eigen-decomposition of a 1000× 1000 matrix.

• In Section 2.3, we note what seems to be contradiction
between direct LDA and the weighted, pairwise Fisher
criteria regarding the importance of the nullspace of the
within-class scatter matrix. (Understanding this contra-
diction is the subject of ongoing research.)

• We provide experimental results comparing several
subspace approaches, both with and without classifier
combination. These experiments are the first for mod-
ular LDA and, for modular PCA, provide results on
a larger database than has been previously published.
These results demonstrate the significant performance
improvements achievable using simple classifier combi-
nation with modular LDA (or modular PCA) subspaces.
Perhaps most importantly, these results are the first
to indicate that, although computational benefits are
indeed provided, direct LDA methods do not necessar-
ily perform better than PCA-first methods in terms of
classification accuracy.

• We describe the computation and use of a simple con-
fidence metric. We show experimentally how this confi-
dence metric can be employed to significantly improve
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accuracy in situations where multiple observations of a
given subject are expected.

The remainder of this paper is organized as follows. In Sec-
tion 2, we first review traditional LDA (which we will re-
fer to as T-LDA), direct LDA (D-LDA), and weighted LDA
(W-LDA). We then present an algorithm that combines both
direct and weighted LDA in a unified algorithm we refer to
as DW-LDA. In Section 3, we present the multiple-observer,
modular LDA subspace system. We then provide some ex-
perimental results in Section 4 and conclude in Section 5
with some closing remarks.

2. DW-LDA

The aim of traditional LDA (T-LDA) is to project high-
dimensional feature vectors inRn onto a lower-dimensional
subspaceRm, wherem<n, while preserving as much dis-
criminative information as possible. One formal expression
for the corresponding optimization criterion (see Ref.[23]
for equivalents) can be written

arg max
A

tr(ATSbA)

tr(ATSwA)
, (1)

whereA ∈ Rn×m is the projection matrix we seek, tr(·) is
the trace operator,Sw ∈ Rn×n is the within-classscatter
matrix, andSb ∈ Rn×n is thebetween-classscatter matrix.
The within-class scatter matrix is given by

Sw =
C∑

i=1

Pi

Ni∑
j=1

(x(i)
j

− �i )(x
(i)
j

− �i )
T, (2)

whereC is the total number of classes,Ni is the number
of samples in classCi , Pi is the prior probability ofCi ,

x(i)
j

∈ Rn is thej th vector ofCi , and�i ∈ Rn is the mean
of Ci . The between-class scatter matrix is given by

Sb =
C∑

i=1

Pi(�i − �)(�i − �)T, (3)

where � ∈ Rn is the ensemble mean. We note that
rank(Sb)�C − 1 since it is the sum ofC rank-one or zero
(if �i = �) matrices, where at mostC − 1 are linearly inde-
pendent. For convenience, and without loss of generality,
we assume that rankSb = C − 1 for the remainder of this
paper. The intuitive interpretation of Eq. (1) is that T-LDA
attempts to simultaneously minimize the within-class scat-
ter and maximize the between-class scatter. Perhaps, the
most common approach for solving Eq. (1) is to solve the
generalized eigen-problem ofSb andSw. This solution can
be achieved by simultaneously diagonalizingSw and Sb

[23]. The simultaneous diagonalization process is accom-
plished (assumingSw is non-singular) by whiteningSw,
diagonalizing the resultingSb, and then taking the largest

eigenvalue eigenvectors ofSb. Intuitively, this process can
be described as whitening the denominator of Eq. (1) and
then maximizing the numerator over a reduced dimension-
ality. The converse approach of whitening the numerator
and minimizing the denominator is equivalent, but recall
thatSb is generally singular and cannot be whitened.

2.1. W-LDA

As alluded to in Ref.[23] and discussed in Refs.[22]
and [24], the class separability criteria that T-LDA maxi-
mizes is the Euclidean distance between the class means.
Euclidean distance, of course, is not necessarily representa-
tive of classification accuracy, and its use as the separability
measure can cause some classes to unnecessarily overlap in
the reduced space. Two similarly motivated solutions to this
problem have been proposed: weighted pairwise Fisher cri-
teria [22] and fractional-step LDA[24]. Although quite ef-
fective [25], fractional-step LDA is iterative and very time-
consuming; hence, we adopt the weighted pairwise Fisher
criteria in this paper which allows for a direct solution.
To begin, we first note an alternate expression forSb [22]
(equivalence is proven in Appendix A):

Sb =
C−1∑
i=1

C∑
j=i+1

PiPj�(�ij )(�i − �j )(�i − �j )
T, (4)

wherePi andPj are the class priors,�ij is a measure of
the separation between classesCi and Cj , �(·) is some
weighting function, and setting�(·)= 1 makes Eqs. (4) and
(3) equivalent.

In Ref. [22], weighted pairwise Fisher criteria are pro-
posed and we refer to the resulting algorithm asweighted
LDA or W-LDA. In W-LDA, the Mahalanobis distance is
selected for the class separation measure�ij :

�ij =
√

(�i − �j )
TS−1

w (�i − �j ) (5)

and the weighting function,�(·) in Eq. (4) above, is selected
so that the contribution of each pair of classes depends (ap-
proximately) upon the Bayes error rate between the classes,
yielding:

�(�ij ) = 1

2�2
ij

erf

(
�ij

2
√

2

)
. (6)

OnceSb has been computed in this manner, we simply apply
the same procedure as T-LDA.

2.2. D-LDA

One problem often encountered with LDA in practice
is that the original feature vectors may be of such high
dimensionality that the storage and/or eigen-analysis of
Sb andSw may be impractical. In such applications some
other form of dimensionality reduction—usually PCA in
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the face recognition case[6,7,26]—is performed prior to
LDA. PCA, however, does not consider class labels and can
decrease discriminative capability. In Ref.[21], an LDA
algorithm—direct LDA or D-LDA—that can be directly
applied to high-dimensional data is presented.

The critical idea that enables D-LDA is to first project
all samples inRn onto theC − 1 dimensional column-
space ofSb (i.e., discard the nullspace ofSb). This is mo-
tivated by assuming that directions along which there is no
between-class scatter are not useful for discrimination. Al-
though this assumption is not entirely true—since the scat-
ter matrix is parameterized by only the class means—results
[21] indicate the approach is still effective. In many high-
dimensional problems, the number of classes,C, is much
smaller than the dimensionality of the vectors,n. Recalling
that rank(Sb)=C − 1, we can reduce the dimensionality of
the problem fromn to C −1 by projecting onto the column-
space ofSb. By discarding the nullspace ofSb, the between-
class scatter matrix in the reduced space is full rank. We may
then use the simultaneous diagonalization approach men-
tioned above, where we whiten the numerator of Eq. (1) and
minimize the denominator. According to Refs.[27,21], this
permits us to preserve the nullspace ofSw, which contains
the most discriminative information.

As stated above, the first step in D-LDA is to find a basis
for theC − 1 dimensional column-space ofSb. Recall that
Sb is an n × n matrix, which might imply a significant
computational burden ifn is large. Fortunately, theC − 1
eigenvectors ofSb corresponding to theC − 1 non-zero
eigenvalues can be found by solving a much more tractable
C × C problem[23] which we review at the end of Section
2.3.

2.3. Combining D-LDA and W-LDA

From the discussion in the previous section, it would cer-
tainly be desirable to exploit the benefits of W-LDA and
D-LDA simultaneously. There are, however, a couple of po-
tential issues that must be recognized and overcome. First,
we note that the computation ofSb for W-LDA, as given by
Eq. (4), first requires the computation ofSw, which is a large
n × n matrix; this computation would defeat the computa-
tional savings of D-LDA.Sw is required since Mahalanobis
distance is used for�ij and, as shown in Eq. (5),S−1

w is

needed in the computation. Noting the need forS−1
w leads

us to another potential difficulty; one of the primary moti-
vations for D-LDA was the preservation of the nullspace of
Sw. If the nullspace ofSw is non-empty, however, thenS−1

w

does not exist.
Noting that a step-by-step algorithmic description is given

at the end of this section, we propose the following approach
to address these problems. First, recalling (4)–(6), we make
the mild assumption that�(�ij )>0. Note that this assump-
tion implies that no two classes have equal means (�i 
= �j )

and thatS−1
w exists, or is replaced with an alternative. In this

case, the nullspaces ofSb from Eqs. (4) and (3) are equiva-
lent (see proof in Appendix B). Hence, we can remove the
nullspace by projecting all the data onto theC − 1 dimen-
sional column-space ofSb. Recall that the column-space of
Sb can be found by eigen-analysis of a much more tractable
C×C matrix. Once we have projected to theC−1 column-
space, we computeSw in the reduced space and, if it is
non-singular, we simply proceed with W-LDA as described
above.

If, however,Sw is indeed singular in the column-space of
Sb, we must compute�ij differently for the W-LDA portion.
At this point it is interesting to note that there is an apparent
contradiction between D-LDA and W-LDA regarding the
nullspace ofSw. Suppose, for example, thatSw (in the r =
C−1 dimensional column-space ofSb) is full rank, but with
one small eigenvalue�r = � → 0. Now suppose there exist
two classes whose mean difference vector,�i − �j , has a
non-zero component in the direction of�r , the eigenvector
of Sw corresponding to the small eigenvalue�r . Recalling
the weighting function for W-LDA, as specified by Eqs.
(5) and (6), we see that as� → 0, �ij → ∞, and hence
�ij → 0. In other words, any vectors with components in the
nullspace ofSw receive minimal weighting in W-LDA. This,
of course, contradicts D-LDA which claims these directions
to be the most important. The solution we propose is to alter
�ij so that it is equal to Mahalanobis distance in the column-
space ofSw and Euclidean distance in the nullspace. We do
this by simply setting the zero eigenvalues ofSw to 1 when
computingS−1

w to yield a regularized inverse

Ŝ−1
w =

r−d∑
i=1

1

�i
�i�

T
i +

r∑
i=r−d+1

�i�
T
i , (7)

which is then used in place ofS−1
w for �ij in Eq. (5).

We note that further investigation is perhaps warranted to
determine an optimal method to replace the zero eigenvalues
of Sw for the purposes of computing�ij . W-LDA seems to
suggest that the zero eigenvalues should be replaced with a
small number (perhaps the minimum of the non-zero eigen-
values) so that any vectors with components in the nullspace
of Sw are minimally weighted. D-LDA, which is premised
on the importance of the nullspace ofSw, seems to suggest
that zero (or even near zero) eigenvalues should be replaced
with a large number (perhaps the maximum eigenvalue) so
that such vectors are heavily weighted. As a compromise, we
replace the zero eigenvalues with 1, which simply equates
to Euclidean distance (which has been effective for T-LDA)
in the nullspace ofSw.

As a final point of interest concerning this issue, we
note that the nullspace ofSw is generally empty in the
column-space ofSb. This is somewhat ironic, considering
the claimed significance of this nullspace expressed in Ref.
[21]. We can see from Eq. (2) thatSw is the sum of several
outer products and that generally rank(Sw)�C − 1, even
when projected onto the column-space ofSb, so long as
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we have at least two samples per class. Recalling that the
column-space ofSb is of dimensionC − 1, it seems that
Sw will usually be non-singular in this space with as little
as two training samples per class. In fact, in our experi-
ments,Sw was never singular in the column-space ofSb.
Although this fact seems to minimize the claimed D-LDA
benefit of allowing the preservation of the nullspace ofSw,
it does not diminish the computational benefit. We need only
to find the eigenvalues and eigenvectors of aC × C matrix
(C = 128 in our experiments), as opposed to ann × n ma-
trix (where n is the number of pixels; as many as 10,580
in our experiments), even if abundant training data exists.
Furthermore, it is conceivable that there will exist problems
where the feature distributions do indeed makeSw singular
in the column-space ofSb. In such situations, D-LDA will
certainly be beneficial.

We can now describe the complete DW-LDA algorithm
with the following six steps.

1. Let B ∈ Rn×r be a orthonormal basis for the column-
space ofSo

b
, the between-class scatter matrix in the orig-

inal space. Remove the nullspace of the between-class
scatter matrix by projecting all samples ontoB

x ∈ Rn → BTx ∈ Rr .

2. ComputeSw in the reduced spaceRr . If Sw is full rank
computeS−1

w , otherwise computêS−1
w using Eq. (7).

3. ComputeSb using Eq. (4) with�ij given by Eq. (6) and

�ij given by Eq. (5). IfSw is singular, then usêS−1
w

when computing�ij .
4. WhitenSb:

Sb → WTSbW = Ir×r ,

Sw → S̃w = WTSwW,

whereW=��−1/2 is the whitening transformation ofSb

with � being the eigenvectors ofSb and� the diagonal
eigenvalue matrix.

5. DiagonalizeS̃w:

S̃w → Dw = V TS̃wV,

whereDw is the diagonal eigenvalue matrix ofS̃w and
V contains the corresponding orthonormal eigenvectors.

6. Assume that the eigenvalues and eigenvectors ofDw and
V are sorted in ascending order, possibly with some zeros
in Dw. To maximize the LDA criterion in Eq. (1) while
reducing to dimensionalitym, take the firstm columns
of V which correspond to them lowest (some possibly
zero) eigenvalues. The overall resulting transformation
(i.e., projection) matrixA ∈ Rn×m can then be written
as follows:

A = BWV

(
Im×m

0(r−m)×m

)
. (8)

Note that in Step 1 above we project onto the column-
space ofSo

b
; this requires us to compute its eigenvectors

corresponding to non-zero eigenvalues. AlthoughSo
b

can be
very large (n×n), recall that rank(So

b
)�C−1 and generally

C>n. Referring back to Eq. (3), we note thatSo
b

can also
be written as follows:

So
b =

C∑
i=1

(�i − �)(�i − �)T = UUT, (9)

where theith column ofU ∈ Rn×C is (�i − �). The eigen-
vectors of the possibly very largeUUT can be computed
simply from the eigenvectors of the generally much smaller
UTU as follows [23]. The eigenvector decomposition of
UTU yields

(UTU)� = �E. (10)

Pre-multiplying both sides byU gives

(UUT)(U�) = (U�)E, (11)

where the columns of(U�) corresponding to non-zero
eigenvalues inE give the eigenvectors ofUUT that we seek.
Although orthogonal, note that theith column of(U�) must
be normalized by(ei )

−1/2—whereei (non-zero) is theith
diagonal element ofE—to make the columns orthonormal.

3. Modular Fisherfaces

Perhaps, the earliest suggestions for the use of modular
subspaces can be found in Ref.[1] and also in the view-
based and modular eigenspaces of Ref.[14]. It is noted in
Ref. [14], and observed in much research since, that recog-
nition from a frontal face image is sensitive to changes in
expression, decoration, and illumination. By decomposing
the full face image into modular subregions, Ref.[14] shows
that improved accuracy can be obtained with respect to
expression and decoration variation. An extension to the
view-based eigenspaces of Ref.[14], along with more com-
prehensive experimental data showing much promise, is
found in Ref.[15].

We propose a face recognition system employing mod-
ular LDA subspaces, i.e., modular Fisherfaces. Through
the survey of previous work in Section 1 and the previ-
ous modular subspace efforts discussed above, this sys-
tem should provide improved robustness to three of the
four confounding factors—illumination, expression, and
decoration—simultaneously, as described shortly. This
framework employs a parallel system of observers, each of
which is trained on a specific (modular) region of the face
from a specific viewpoint (all frontal for the work herein).
Each such observer is a linear subspace classifier and the
outputs of all the observers are combined using a simple
sum-rule, classifier combination strategy[28]. The modular
observers[14] along with the use of LDA should provide
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Preprocessing

Observer 1

Observer 2

Observer 3

Combiner
Input Image

Sub-images Subject Score Data

Subject

Confidence

Grayscale Normalization
Geometry Normalization

LDA Nearest Neighbor
Classifiers

Sum Rule

Fig. 1. Example of the proposed framework with three observers.

some robustness to decoration. Improved robustness to il-
lumination variation should also be provided by LDA[6].
Expression should be addressed through the combination of
multiple observers and LDA—some observers will be ap-
proximately invariant to expression, while LDA will dis-
count expression variability in the training set (since it is not
discriminatory) when constructing the projection matrices.
Finally, additional overall robustness should be provided by
integrating the responses of all the observers to obtain a final
classification. A simple illustration of a system with three
observers is illustrated inFig. 1. In the following subsec-
tions, we describe the components of this system in more
detail.

3.1. Preprocessing

The preprocessing stage indicated inFig. 1 assumes a
frontal face image as input with previously labeled land-
marks. After geometry normalization based upon the labeled
landmarks, an elliptical mask is applied to remove back-
ground information. Each image is subsequently normalized
to have zero-mean and unit variance to account for gross
gray-scale variation. The resulting images are raster scanned
to create the feature vectors for input into the observers.

3.2. Observers

Observer 1 uses 92× 115 pixel full frontal face images
implying an original feature vector length ofn1 = 10,580.
Observer 2 uses 92× 56 pixel images of the eyes and nose
face region, implying an original feature vector length of
n2 = 5152. Observer 3 works with 92× 40 pixel images of
the eyes region, implying an original feature vector length
of n3 = 3680. Examples of images corresponding to each
observer are shown inFig. 2. These observers were selected
based upon earlier work in Refs.[8] and[14] and intuition.
For example, in the presence of unexpected lower facial
hair, humans can still recognize a face by focusing upon the
eyes and nose region. Similarly, in the presence of confus-
ing eyeglasses, humans can still perform recognition based
on other, whole-face features. The automatic selection of
such observers might be an interesting avenue for further
research.

Observer 1

Observer 2
Observer 3

Fig. 2. Examples of the modular face image regions used by the
three observers in the proposed system.

In the current implementation, each observer performs a
simple nearest-neighbor search, using Euclidean distance, on
its own local database. For query imageq and each observer
o, a scorepo

qs is computed for each subjects and passed on
to the combiner. The score for observero is given by

po
qs = (F o

q do
qs)

−1, (12)

wheredo
qs is the distance between the query imageq and

its nearest neighbor in subject classs, and the normalization
factorFo

q is given by

Fo
q =

S∑
s=1

(do
qs)

−1, (13)

whereS is the number of subjects, so that

S∑
s=1

po
qs = 1 (14)

Hencepo
qs is, in some sense, a rough approximation to the

probability that query imageq belongs to subject classs
in the space seen by observero. Without combining the
observers, nearest-neighbor classification is implemented for
each observer individually by simply selecting the subject
class with the highest score.

3.3. Observer combination

For each query imageq, the score data for each subject
s from each observero is passed to the combiner. Since the
score data has been normalized so that it approximates a
probability, a number of simple classifier combination strate-
gies can be employed. In our implementation, we employ
the sum-rule. As noted in Ref.[28], the implicit assump-
tions that make the sum-rule optimal are quite restrictive.
Despite this fact, the sum-rule is reported in Ref.[28] to be
the best performing. This is attributed to the sum-rule being
more resilient to estimation errors. Obviously, the interested
reader could explore various other combination strategies
that have been well-documented in the literature. According
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to the sum-rule, a combined scorePqs for each subjects is
computed by simply adding the scores for subjects reported
by each observer:

Pqs =
3∑

o=1

po
qs . (15)

The subject with the highest combined score is then selected
as the classification result for the queryq.

In our implementation, we also compute a confidence
measuremq as an additional combiner output, similar to
the approach of Ref.[29]. For a given query imageq, let
the highest combined score be denotedPqs1 and the second
highest combined score be denotedPqs2. The confidence
measuremq is computed as the logarithm of the ratio of the
highest score to the second-highest score:

mq = log

(
Pqs1

Pqs2

)
. (16)

In applications where more than a single observation of a
subject is expected and/or multiple poses are observed si-
multaneously (e.g., video surveillance in a controlled access
environment), the confidence factor can be used for weight-
ing the integration of decisions through time and/or across
views. In the results of Section 4, we illustrate the potential
effectiveness of this confidence metric.

3.4. Extension to pose variation

Finally, recall that we earlier mentioned the extension of
the presented work to the pose variation problem. Based on
the success of previous work in Ref.[14] and particularly
Ref.[15], we hypothesize that the extension of our approach
to handle varying pose is quite straightforward. In addition
to variable-pose training data, the extension would only re-
quire observers (i.e., additional modular LDA subspaces)
for alternate poses and a pose estimator in the preprocess-
ing stage. Classifier combination could then be carried out
using modular image regions of the same pose as well as
across different poses. Since pose variation is not an issue
in our problem domain, this topic is presently unaddressed
in our research.

4. Experimental results

In this section, we present experimental results using our
modular system and compare the performance of several
subspace projection algorithms. Recall from Section 1, that
our target application requires recognition of between 100
and 150 people, with good training data available for each
person. With this fact in mind, we selected two publicly
available databases that contained data most appropriate to

our problem of interest. The first database was the CVL
database[30], which nominally consisted of 114 persons
with three frontal views each and included variations in ex-
pression (neutral, smile without teeth showing, smile with
teeth showing). In this database, subject number 56 was a
duplicate of subject number 50 and was therefore removed.
Subject numbers 35, 44, and 93 had only two frontal im-
ages available each. One image for subject number 25 was
discarded because the pose was significantly deviated from
frontal. Hence, from the CVL database we had 113 subjects
with a total of 335 images. The other database employed
was the Yale Face Database[31]. This database comprised
11 images each of 15 subjects. The 11 images per subject
included variations in expression, illumination, and deco-
ration: center-light, with glasses, happy, left-light, without
glasses, normal, right-light, sad, sleepy, surprised, and wink.
All of the “surprised” (open-mouth as if screaming) data
was excluded because it differed significantly from what
we expect to see in our problem domain of secure facil-
ity monitoring. Furthermore, the “with glasses” image for
subject number 3 was discarded because the glasses were
opaque and occluded the requisite landmarks. Hence, from
the Yale Face Database, we have 15 subjects and a total of
149 images. Our complete database, comprising both the
CVL and Yale data, hence contained 128 subjects and 484
images.

Five different subspace projection algorithms were
tested, each reducing the original features spaces (of di-
mension 10,580, 3152, and 3680 for observers 1, 2, and 3,
respectively) to 50 dimensions. A series of 100 training
and classification runs were performed. In each run, all but
one randomly selected image for each subject was used
for training and testing was performed on the remaining
128 images (one for each subject). The five algorithms
tested were: PCA, PCA/LDA, PCA/W-LDA, D-LDA, and
DW-LDA. In PCA, which is the well-known “eigenface”
approach, we simply select the first 50 principal com-
ponents. In PCA/LDA, also known as the “Fisherface”
approach, we first use PCA to project to a 107-dimensional
subspace (13 of the possible 484−128=356 from the train-
ing data) and then apply T-LDA to reduce the dimension
to 50. PCA/W-LDA is implemented in the same manner,
but we replace T-LDA with the W-LDA algorithm. For
D-LDA, we use the direct LDA algorithm of Section 2.2
to project to dimension 50. For DW-LDA we employ the
new direct, weighted LDA algorithm presented in Section
2.3. Recognition performance for each of the five algo-
rithms is reported inTable 1for each observer individually
as well as all three combined (using the sum-rule com-
biner). Note that traditional “eigenfaces” is represented
by the Observer 1 score for PCA and that traditional
“Fisherfaces” is represented by the Observer 1 score for
PCA/LDA.

From these results we see that the algorithms employing
W-LDA perform better—although only marginally so—than
those that employ traditional LDA. It is interesting to note,
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Table 1
Correct classification percentages for five different subspace pro-
jection algorithms

1 2 3 Combined

PCA 60.8 72.4 86.6 83.5
PCA/LDA 91.9 88.7 93.0 95.1
PCA/W-LDA 92.1 89.2 93.4 95.3
D-LDA 85.6 78.6 87.3 91.6
DW-LDA 87.3 80.2 88.1 92.3

Results are reported for the three observers individually as
well as the combination. Note that traditional “eigenfaces” corre-
sponds to the Observer 1 score for PCA (60.8%) and “Fisherfaces”
corresponds to the Observer 1 score for PCA/LDA (91.9%).

however, that in all cases D-LDA performs worse than
PCA/LDA and, similarly, DW-LDA performs worse than
PCA/W-LDA. These results are significantly different than
earlier results[21] that used a smaller facial image database.
Our results seem to indicate that D-LDA, while allowing
the direct application of LDA to high-dimensional data,
does not generalize as well as the PCA-first algorithms.
One explanation for this is that the direct LDA-based al-
gorithms tend to preserve noise that is discriminative in
the training set, but that does not exist in the testing set;
PCA tends to discard such noise. The value of D-LDA or
DW-LDA should not necessarily be discounted because of
this, though. The direct LDA approaches requires only the
eigenvalues and eigenvectors of aC × C (128 × 128 in
our experiments) matrix regardless of the total number of
the training samples. PCA, on the other hand, requires the
eigenvalues and eigenvectors of at least anN × N matrix
in the small sample size situation (recallN is the number
of training samples;N = 356 in our experiments) and up
to those of ann × n matrix with a complete training set
(recall n is the original dimensionality, up ton = 10,580
in our experiments). Obviously, PCA can become compu-
tationally challenging asN increases, while the complexity
of D-LDA or DW-LDA only increases with the number
of classes,C. As a topic for future research, this char-
acteristic allows for augmentation of the training set, by
adding synthetically altered versions of the training images
(i.e., misalignments, occlusions, noise, etc.), to account
for potential error sources such as additive noise and/or
misalignment. Also evident from the data inTable 1is that
Observer 3 (the eyes-only region) invariably performs better
than either Observer 1 or Observer 2 alone. This indicates
experimentally the fact that the eyes tend to be somewhat
invariant to illumination, expression, and decoration (such
as eyeglasses) that does not occlude the eyes and/or eye-
brows. A similar result was reported previously[14] in the
PCA case. Another factor that contributes to the improved
performance of Observer 3 is the fact that the Observer 3
images are smaller and hence the retained 50 dimensions
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Fig. 3. Histograms of confidence metric for successful identifi-
cations and failed identifications using DW-LDA. In our area of
interest, where multiple surveillance cameras will be installed,
low-confidence identifications can be discarded.

represent a larger percentage of the total variation in the
image set.

We now turn our attention briefly to the confidence
measure discussed in Section 3.3. InFig. 3, we plot
the distribution of the confidence metric for successful
identifications and failed identifications for the DW-LDA
algorithm. We can use the confidence metric to reject de-
cisions below a certain confidence level. Using this idea,
we plot the accuracy of the different algorithms versus
the rate of low-confidence rejected images inFig. 4. Note
that the acceptable confidence threshold increases to the
right along with the rate of rejected images. The plot
in Fig. 4 indicates that if 10% of the images were re-
jected due to low confidence, DW-LDA (dash–dot line)
would achieve about 99% accuracy on the remaining
data, while PCA/LDA and PCA/W-LDA would achieve
nearly 100%. At the same low-confidence rejection rate,
PCA would achieve slightly less than 90% accuracy.
Also evident in the plot is that DW-LDA consistently
performs better than D-LDA (dashed line), but only by
about 0.7%. This use of the confidence metric can be
very effective in secure-facility video surveillance ap-
plications, where multiple observations of a subject can
easily be obtained via multi-camera video surveillance.
We can continue to acquire data until a high-confidence
observation is obtained or alert security personnel if
no such observation is acquired after some preset time
interval.

5. Conclusions

In this paper, we present a modular LDA subspace ap-
proach for template-based face recognition that performs
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Fig. 4. Accuracy of different subspace projection algorithms
versus rate of images rejected due to low confidence. This plot
indicates that if 10% of the images were rejected due to low con-
fidence, DW-LDA (dash–dot line) would achieve about 99% ac-
curacy on the remaining data, while PCA/LDA and PCA/W-LDA
would achieve nearly 100%. At the same low-confidence rejection
rate, PCA would achieve slightly less than 90% accuracy. Note
that PCA/LDA and PCA/W-LDA are the best performing meth-
ods and are essentially indistinguishable on this plot (top curves).
Also note that DW-LDA consistently performs better than D-LDA
(dashed line), but only by about 0.7%.

significantly better than traditional “eigenfaces” or
“Fisherfaces.” This approach is specifically aimed at ad-
dressing three (illumination, expression, and decoration)
of the four confounding factors of interest. Although pose
is not specifically addressed in the presented work, we
briefly describe how the system might be extended to
handle pose variation. We also present a new LDA-based
subspace projection algorithm that unifies direct LDA (D-
LDA) and the weighted pairwise Fisher criteria (W-LDA)
in a single algorithm we refer to as direct, weighted LDA
(DW-LDA). Experimental results indicate that DW-LDA
performs better than D-LDA. Our results also indicate that
D-LDA-based approaches, while providing significant po-
tential computational savings, are actually outperformed
by the well-known, PCA-first LDA approaches in terms of
classification accuracy.
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Appendix A

Here we show that Eq. (4) is equivalent to Eq. (3) when
�(�ij ) = 1 for all (i, j). We begin with Eq. (4):

Sb =
C−1∑
i=1

C∑
j=i+1

PiPj (�i − �j )(�i − �j )
T

= 1

2

C∑
i=1

C∑
j=1

PiPj (�i − �j )(�i − �j )
T

= 1

2

C∑
i=1

C∑
j=1

PiPj ((�i − �) + (� − �j ))

× ((�i − �) + (� − �j ))
T

= 1

2

C∑
i=1

C∑
j=1

PiPj ((�i − �)(�i − �)T

+ (�i − �)(� − �j )
T + (� − �j )(�i − �)T

+ (� − �j )(� − �j )
T).

Since
∑C

i=1 Pi = 1, we can combine the first and last outer
product terms above to get

Sb =
C∑

i=1

Pi(�i − �)(�i − �)T

+ 1

2

C∑
i=1

C∑
j=1

PiPj (�i − �)(� − �j )
T

+ 1

2

C∑
i=1

C∑
j=1

PiPj (�j − �)(� − �i )
T.

Examining the last two terms above, we note that∑C
i=1 Pi�i =� and therefore

∑C
i=1 Pi(�i −�)= 0. We are

then left with only the first term which is exactly Eq. (3).

Appendix B

Here we provide a proof that demonstrates that the
nullspaces ofSb from Eqs. (3) and (4) are equivalent when
�(�ij )>0. Define

A =
∑
i

xix
T
i (17)

and

B =
∑
i

�ixix
T
i , �i >0 ∀i. (18)

We denote the nullspace ofA asN(A) and the nullspace
of B asN(B). Now suppose thatv ∈ N(A) andv 
= 0.
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Then

Av = 0 �⇒ vTAv = 0

�⇒vT


∑

i

xix
T
i


 v = 0

�⇒
∑
i

(xT
i v)

2 = 0

�⇒xT
i v = 0 ∀i.

Therefore,

Bv =
∑
i

�ixi (x
T
i v) = 0

so

v ∈ N(A) �⇒ v ∈ N(B).

Similarly, now suppose thatv ∈ N(B) andv 
= 0. Then

Bv = 0 �⇒ vTBv = 0

�⇒vT


∑

i

�ixix
T
i


 v = 0

�⇒
∑
i

(�ix
T
i v)

2 = 0

�⇒xT
i v = 0 ∀i.

Therefore,

Av =
∑
i

xi (x
T
i v) = 0

so

v ∈ N(B) �⇒ v ∈ N(A).

Hence,

v ∈ N(A) ⇐⇒ v ∈ N(B).
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