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Abstract

In this paper we present a method for constructing frac-
tal interpolation surfaces and volumes through points sam-
pled on rectangular lattices. Unlike other surface construc-
tions ours uses rectangular rather than triangular tilings,
halving the number of required parameters. This method is
no more complex than previous constructions and yet does
not suffer from their limitations. Additionally, our construc-
tion extends easily to volumetric interpolation, for which
there were no previous (continuous) constructions. In addi-
tion to an example with synthetic data, a real image is in-
terpolated using a fractal surface. Limitations and possible
improvements are mentioned.

1. Introduction

Interpolation has long been an important tool for data
visualization. Classical interpolation techniques fit elemen-
tary functions (e.g., lines and cubics) to given data points
in order to render a connected visualization of the sam-
ples. Such elementary functions often imbue the visualiza-
tion with a degree of smoothness that may not be consistent
with the nature of the data. Fractals [1] and fractal interpo-
lation [2] have been applied to prevent such inappropriate
smoothing. Fractal interpolation functions (FIFs) have also
been used to interpolate turbulent speech signals [3] as well
as to model mountain profiles, seismic data, and electrocar-
diograms [4].

The motivation of this work was to explore the potential
use of fractal interpolation in the context of image interpo-
lation. In this respect, we consider points of an image to
be samples (on a uniform rectangular grid) of a continuous
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surface. As first presented in [5], the construction of (con-
tinuous) FIFs is relatively straightforward. Creatingcon-
tinuousfractal interpolation surfaces (FISs), and similarly
fractal interpolation volumes (FIVs), however, is more dif-
ficult (excluding the tensor product cases).

In Section 2, we review the basics of FIFs and note two
equivalent forms they may take – the latter of which facili-
tates our FIS and FIV constructions. In Section 3, we first
state the FIS problem and describe the difficulties involved
in constructing continuous FISs. We next briefly describe
previously proposed constructions and point out their re-
strictions. We then detail our FIS construction and provide a
synthetic example. In Section 4, we describe how the ideas
behind our FIS construction can be extended to create con-
tinuous FIVs. In Section 5, we note that many fractal inter-
polation problems can be reduced to a simple matrix/vector
expression that can, in turn, be used to aid in selecting free
parameters. Finally, in Section 6, we present a portion of
a fractal interpolated image and make some concluding re-
marks.

2. Fractal interpolation functions

For the classic linear FIF we have a set of data points{
(xn, yn) ∈ D × R : n ∈ [0, 1, . . . , N ]

}
, (1)

wherexn is strictly increasing andD = [x0, xN ] ⊂ R is a
closed interval. We seek a continuous functionf : D → R
that interpolates this data according to

f(xn) = yn for n ∈ [0, 1, . . . , N ]. (2)

Following the standard form used in the signal processing
literature, such FIFs are constructed usingN affine map-
pings of the form

wn

(
x
y

)
=
(
an 0
bn γn

)(
x
y

)
+
(
cn
dn

)
for n ∈ [1, . . . , N ], (3)
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Figure 1. Example fractal interpolation func-
tion.

with the interval endpoint constraints

wn

(
x0

y0

)
=
(
xn−1

yn−1

)
and wn

(
xN
yN

)
=
(
xn
yn

)
for n ∈ [1, . . . , N ]. (4)

We refer toan as thedomain contraction factorsandγn
simply as thecontraction factors. Equations (3) and (4) im-
ply that each mapwn horizontally “shrinks” (by a factor of
an) and vertically scales (by a factorγn) the entire function
over the intervalD, and maps it to the piece of the function
over the intervalDn = [xn−1, xn]. (See Fig. 1.)

It is easily shown that with each contraction factorγn
a (fixed) free parameter, the remaining parameters of each
map in (3) are uniquely specified by the constraints of (4).
With eachγn chosen such that|γn| < 1, the collection of
affine mappings defined by (1)-(4) form a hyperbolic iter-
ated function system (IFS). In other words, there exists a
unique (nonempty) compact setG ⊂ R2 such that

G =
N⋃
n=1

wn(G). (5)

Moreover, it can be shown that this setG is the graph of a
continuous functionf : [x0, xN ] → R that interpolates the
data set according to (2).

Detailed in [5], but ignored in the signal processing liter-
ature until [6], is an equivalent form for the FIF associated
with (1)-(4) that is expressed as follows:

wn(x, y) =
(
Ln(x), Fn(x, y)

)
(6a)

Ln(x) = anx+ cn (6b)

Fn(x, y) = h(Ln(x)) + γn
(
f(x)− b(x)

)
(6c)

where theheight functionh(x) is the piecewise linear in-
terpolation through the data points, and thebase function
b(x) is the linear function through(x0, y0) and(xN , yN ).

In this alternative form, the subinterval endpoint constraints
become

Ln(x0) = xn−1 and Ln(xN ) = xn

Fn(x0, y0) = yn−1 and Fn(xN , yN ) = yn.
(7)

Note thatLn(x) of (6b) describes the horizontal “shrink-
ing” and mapping ofD ontoDn. We will refer to these
functions as thedomain contractions. What has not been
considered previously, but is necessary for our FIS and FIV
constructions, is to allow the domain contraction factorsan
to be negative. A negative value foran implies that the en-
tire function overD is reflected about its center point when
mapped toDn. (These reflections are similar to transforms
used in fractal image compression.) This reflection just re-
verses the endpoint constraints of (4) and (7). This equiva-
lent form for the FIF will be used in the next sections to aid
in our FIS and FIV constructions.

3. Fractal interpolation surfaces

3.1. Problem Statement

For the surface interpolation problem, we begin with a
data set that can be expressed similarly to (1) as{

(xn, yn) ∈ D × R : n ∈ N
}
, (8)

where nowxn = (x1
n, x

2
n),D ⊂ R2 is closed, andN repre-

sents some ordering of the data set. In our case of a uniform
rectangular lattice, we have

N = [0, 1, . . . , N1]× [0, 1, . . . , N2]. (9)

To interpolate the data of (8) we seek a continuous surface
f : D → R such that

f(xn) = yn for n ∈ N . (10)

We attempt to construct such a surface using maps similar
to (6), wherex now becomes the 2-vectorx ∈ D ⊂ R2 and
Ln(x) can take more general forms (as noted later).

Like the FIF, the FIS construction requires each domain
contractionLn(x) to take the entire domainD ⊂ R2 (or a
subregion ofD for the recurrent IFS) onto the smaller “sub-
domain”Dn, where the union of these subdomains covers
D. In the FIF case, these subdomains were the subintervals
we referred to asDn. For the FIS, these subdomains are
areas and can take various shapes as illustrated in Fig. 2.
The intuitive extension of the FIF would imply that these
subdomains inR2 should be rectangular. Such rectangu-
lar subdomains have, however, proved troublesome for con-
structing continuous FISs. In Section 3.3 we describe how
to alleviate this problem, but mention here that previous FIS
constructions have resorted to triangular subdomains.
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Figure 2. Domain for fractal interpolating sur-
faces over rectangular lattice, possible sub-
domain tilings, and subdomain boundary
points.

The key difficulty in constructing FISs involves ensur-
ing continuity. Adjacent subdomains are associated with
different mappings, and yet share common points. To guar-
antee continuity, we require that these adjacent mappings
produce the same values at these common points. Referring
to Fig. 2, letx be a point on the boundary of adjacent sub-
domainsDn andDm, which are associated with mappings
wn andwm, respectively. Note first that from (6) we can
show thatFn(x, y) = f

(
Ln(x)

)
, and therefore

f(x) = h(x) + γn
[
f
(
L−1
n (x)

)
− b
(
L−1
n (x)

)]
for x ∈ Dn. (11)

For the boundary point we have bothx ∈ Dn andx ∈ Dm.
With this in mind, we can use (11) to see that for continuity
it is required that

γn
[
f
(
L−1
n (x)

)
− b
(
L−1
n (x)

)]
= γm

[
f
(
L−1
m (x)

)
− b
(
L−1
m (x)

)]
(12)

for all x on the boundaries of adjacent subdomains. These
requirements are sometimes referred to as the “join-up”
conditions [7]. In the FIF, the boundary between adjacent
subdomains consists of only a single point. By the endpoint
constraints of (4) or (7) the join-up conditions are automat-
ically satisfied. For the FIS, however, adjacent subdomains
share infinitely many points along boundaries. Applying
constraints similar to those of the FIF construction will not
work

3.2. Previous constructions

The construction of FISs has been investigated by several
authors [2], [7]-[9]. Here we briefly review these construc-
tions, and point out some of their inherent restrictions.

First, we note that all of the previous constructions em-
ploy triangular subdomains. For data over rectangular lat-
tices, such a triangular tiling requires twice as many map-

pings as a rectangular tiling, since each potential rectangu-
lar subdomain must be divided into two triangles. Addi-
tionally, we note that using such a triangular tiling whenD
is in fact rectangular requires the recurrent IFS formalism.
In this case, larger triangular subregions ofD map to the
smaller triangular subdomains [7],[9]. For an illustration of
these ideas refer to Fig. 2.

The first published construction of a continuous FIS was
described in [8]. This construction requires all the bound-
ary data ofD to be coplanar. As noted in [7] this will pro-
duce an FIS with many straight line segments, potentially a
significant drawback in visualizing many phenomena. The
coplanar boundary requirement is removed in the FIS con-
struction of [7], but only in the special case where every
mapping has the same contraction factor. This requirement
can prove limiting as well since it implies that the surface
is equally “rough” all over, and precludes selecting the con-
traction factors to satisfy any appropriate criteria. In [2]
the author increases the dimension of the affine mappings
from (3) in order to construct FISs (and FIVs). Although
unmentioned, this construction either produces discontinu-
ous surfaces (and volumes) or reduces to the case where the
contraction factors must be constant.

The breakthrough that permits our construction was re-
alized by Zhao in [9]. Using a form similar to (6), Zhao
allows the contraction factorsγn to become a continuous
“contraction function”γ(x). When expressed similarly to
(6c), this yields

Fn(x, y) = h(Ln(x)) + γ(x)
(
f(x)− b(x)

)
. (13)

With γ(x) now a continuous function, the join-up condi-
tions of (12) reduce to

f
(
L−1
n (x)

)
− b
(
L−1
n (x)

)
= f

(
L−1
m (x)

)
− b
(
L−1
m (x)

)
. (14)

The simplest method to satisfy these join-up conditions is
to ensure that

L−1
n (x) = L−1

m (x) (15)

for every pointx on the boundaries of adjacent subdomains
Dm andDn. This means thatLn andLm should map the
same points (from an edge) ofD onto the common bound-
ary (edge) points shared byDm andDn. To meet this condi-
tion, Zhao employs triangular subdomains, and the domain
contractionsLn are chosen to rotateD (or a triangular sub-
region) appropriately.

3.3. Rectangular subdomain FIS

Here we describe our (in fact quite simple) extension of
the approach in [9] that allows the use of rectangular subdo-
mains. The central problem to solve is satisfying the join-up
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Figure 3. Rectangular domain contractions to
satisfy join-up conditions.

conditions of (15). First note that domain contractions that
employ only rotations of (a rectangular)D cannot satisfy
(15). The key to solving this problem is realizing that, con-
trary to the triangular case, rotations alone do not describe
all of the domain contraction possibilities for a rectangu-
lar D. As mentioned at the end of Section 2, we should
also consider reflections. Explicitly adapting the notation
of (6b) for the rectangular FIS, the domain contractions can
be written as

Ln(x) =

(
a1
n 0

0 a2
n

)
x +

(
c1n

c2n

)
. (16)

The four possible sign combinations ofa1
n and a2

n real-
ize four different combinations of reflections about the two
x axes. Using these combinations appropriately, one can
construct an FIS over rectangular subdomains such that the
join-up conditions of (15) are indeed satisfied. An illustra-
tion of this is shown in Fig. 3, where the large numbers,
circled points, and solid lines indicate the vertices and con-
necting edges ofD. The smaller numbers in the subdomains
(indicated by dashed lines) indicate where these vertices are
mapped by the domain contractions. For larger data sets,
this pattern is repeated as necessary. Note that each of the
four possible reflection combinations is necessary to satisfy
the join-up conditions. With the domain contractions cho-
sen in this fashion, we now turn our attention to the selection
of the contraction functionγ(x).

Any continuous function forγ(x) is suitable. In order
to preserve the simplicity of the FIF, however, it might be
desirable to choose a function that can be represented with
a number of parameters close to, or perhaps even much less
than, the number of maps. This would allow the same flex-
ibility of the FIF without an increase in complexity. We
have chosen to use a piecewise linear form (i.e, bilinear)
for γ(x) where there is a parameterγn associated with each
data point (rather than with each map). In other words, we
have a map for eachn ∈ [1, . . . , N1]×[1, . . . , N2] but a con-
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Figure 4. Example fractal interpolation sur-
face.

traction factor for eachn ∈ [0, 1, . . . , N1]× [0, 1, . . . , N2].
Additional points of the contraction functionγ(x) are cal-
culated by simple bilinear interpolation of these contraction
factors.

An example FIS through a3× 3 lattice of synthetic data
points is shown in Fig. 4. The data points were assumed
to be sampled uniformly onD = [0, 1] × [0, 1]. The con-
traction function used was bilinear, and parameterized by a
3 × 3 array of contraction factors. The surface of Fig. 4 is
composed of129×129 points interpolated from the original
3× 3 lattice.

4. Fractal interpolation volumes

The extension of our FIS construction to the volume case
is straightforward. An equation similar to (16) is used,
now in R3. With three differentan parameters, there are
eight possible sign combinations. These correspond to the
eight combinations of reflections across each of the three
x planes. In the volumetric case, the domain contractions
now map larger parallelepipeds to smaller parallelepipeds.
Using appropriate reflections, similar to Section 3.3, a “rect-
angular” tiling can be constructed such that common points
on adjacent “faces” (rather than line segments in the FIS
case) of subdomains come from the same points on the face
of the entire domain. In conjunction with a continuous (3-
D) contraction functionγ(x), the join-up conditions will be
satisfied, resulting in a continuous FIV.

5. Contraction factor selection

For many interpolation problems, only a few additional
points between each data point are sought. In the FIF case,
(11) can be used to reduce such a problem to the following



matrix/vector form

f = h + Qγ, (17)

where the vectorsf andh denote points of the FIFf(x)
and the height functionh(x), respectively [6]. The vectorγ
is composed of the contraction factors, andQ is a (sparse)
matrix whose entries are determined by only a few values
of the difference function

(
f(x)− b(x)

)
.

Employing the bilinear (or similarly parameterized)
form for γ(x), as mentioned in Section 3.3, we can derive
a expression (with appropriate dimensionality adjustments
and data ordering) for the FIS and FIV cases:

f = h + QBγ. (18)

The additional matrixB represents the bilinear interpolation
(or parameterized computation) of the contraction factorsγ
in order to calculate the necessary points of the contraction
functionγ(x). In the form of (18), various techniques (e.g.,
constrained optimization) can be used to findγ such that
the interpolationf possesses some quantifiable properties
related to the known data points.

6. Real image example and conclusions

Unfortunately, experiments using our rectangular subdo-
main FIS for image interpolation have been largely unsuc-
cessful. An exaggerated example is shown in Fig. 5, where
a 21 × 21 section of theLena image has been interpolated
by a factor of 20. The rectangular tiling is evident in the
grid-like structure of the image. Although our experiments
indicate limited applicability for image interpolation, the
flexibility of our FIS and FIV constructions may find use
in other visualization endeavors. Additionally we note that
careful selection of the contraction factors, using (18), may
also prove beneficial

In summary, we have derived a method for constructing
continuous fractal interpolation surfaces for data on rectan-
gular lattices. Unlike prior constructions, ours allows the
use of true rectangular subdomains and, additionally, does
not suffer from the other constraints of these previous con-
structions. We also mentioned how our surface construc-
tion extends easily to the volume interpolation problem, for
which there were no previous (continuous) constructions.
Finally we noted that in many cases fractal interpolation
problems can be expressed in a matrix/vector expression
that allows the contraction factors to be selected according
to some appropriate criteria.
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