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ABSTRACT

We propose an adaptive regularization algorithm for
smoothing dense range images using a novel, first order
stabilizing function. The stabilizer we suggest is based
upon minimizing the reconstructed surface area and is
derived in the native, spherical coordinate system of the
range scanner. This allows adjustments to be made along
only the direction of measurement, thereby preventing the
data overlapping problem that can arise in dense images.
Adaptation is achieved by adjusting the regularization
parameter according to the results of 2D edge analysis.
Results indicate effective noise suppression along with
well preserved edges and details in the reconstructed, 3D
surfaces.

I. INTRODUCTION

In this paper, we propose a regularization method for
smoothing dense range images while preserving the edges.
Laser range scanners are widely used in 3D reconstruction,
but the range measurements are corrupted by many
different sources of noise [1] and often need to be
preprocessed before further use. Since many dense range
image preprocessing approaches are mainly based on the
2D nature, the valuable 3D surface information is not fully
exploited.

For sparse range images, regularization methods are
often used for 3D reconstruction. Since there is not enough
data to detect discontinuities in sparse range images, edges
are preserved through the application of a penalty energy
term in the reconstruction. This penalty term generally
makes minimization of the total energy function very
difficult. Unlike the sparse case, discontinuities can be
predetermined by edge analysis when we apply
regularization for dense image smoothing.

In dense range image reconstruction, we can no longer
regard the surface as a graph as is done in many sparse
image applications. Here, we obtain the stabilizing
function in a spherical coordinate system common to some
laser range scanners. (Specifically, we use a Perceptron
scanner). In this coordinate system, we can optimally
adjust the range data along only the direction of the
measurement.

In this paper, we examine the first order stabilizing
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functions for use in the regularization. The first order
stabilizer discussed here relates to the reconstructed
surface area. By minimizing the reconstructed surface
area, a smoother surface is produced. Since the stabilizing
term will be the square root of a function that makes
minimization difficult if we directly minimize the surface
area, we use an alternative stabilizing term and its validity
is shown. The smoothing factor, or the regularization
parameter, is adaptively determined by edge analysis.

Experimental results show that the proposed first order,
surface area based regularization method significantly
improves range image smoothness, while preserving data
consistency, especially along the edges.

II. MINIMAL SURFACE STABILIZER
Invariant reconstruction of surfaces by regularization has
been previously studied in [2,3,4,5]. Most of the
techniques are used for surface recovery from sparse data,
which is essentially an interpolation problem.
Reconstruction from a single-view, dense range image,
however, is a smoothing or restoration problem. In many
applications, such as mesh simplification and/or
segmentation, the dense 3D data will be reduced [6]. The
performance of such applications depends strongly on the
accuracy of the range data. Traditionally, raw images are
preprocessed using some filtering method, where there is
no control of the data faithfulness and the information
about the surface is not properly used. With the
regularization method, we can control the tradeoff between
smoothness and data compatibility with an appropriate
stabilizing term related to the 3D surface properties.

Traditionally, the surface is considered as a graph
z(x,y) and represented as z; over a rectangular grid.

Letting ¢;; represent the observed data, the total energy
can be written as

E(z2) = Z5(zs—cy)’/ 0§ + MF,
where 1/g; denotes the confidence of the measurement.
In practice, 1/g; is approximated by the surface slant,
cos ¢, with respect to the incident laser. The larger the
angle ¢ between the surface normal and the direction of

measurement, the smaller the confidence is. Because
(zj—ci)/o; rtepresents the perpendicular distance
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between the estimated and real surfaces, it is viewpoint
invariant. The stabilizing function F, can take different

forms. For example, first order regularization is used in [2]
while a second order model is investigated in [4].
Estimating z; is feasible for sparse data. But in dense

range images from a range scanner with a spherical
system, z(x,y) is not necessarily a graph. Therefore, we

would instead like to estimate the range r; so that all

refinement takes place along the line of measurement. If
we estimate z; in a dense range image, the refinement

might cause some surface measurements to be hidden
behind others.

For the Perceptron range scanner we use, each pixel in
the range image R; is converted to Cartesian coordinates

(xijs Yo z) 38 follows:

xi=dx +rsino

y;=dy+rcosasinf M
zz=dz—rcosacosf
o= q+H(col/2—-j)/col @)
B=pB,+ V{ow/2~i)/row
n=(dz-h,)/8
r2= ydx* + (h+dy) /8 ®
r=Rj+ro~rn~r)/8
dx = (h,+dy)tana
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dy = dztan(8 + 0.58)
dz=—h,(1.0—cosa)/tany
where  by,h,, 7,6, 00,8,,H, V.r,,8 are the calibration
parameters of the scanner, and row,col refer to the image
size.
To estimate T, we use the parameterization as
X(at, B) = (rsin o, r cos asin B,—r cos aLcos )
and we ignore small dx,dy,dz in the analysis.
The coefficients of the first fundamental form [7] in the
basis of {X,,X;} are
E=r’+1}

&)

©)

F=r, v
G=r’cos’a+r}p
We denote ¢ as the observed value of r. So the energy
function can be written as
E(m)=%; (rij_Cij)Z/ o;+F Q)
We let the stabilizing function F, be the surface area.
Minimizing g, will give a minimal surface whose mean

curvature is zero. Generally, minimizing surface area will
give a smooth surface, though the minimal surface is not
necessarily smooth [8].
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The surface area is calculated as
F. = A = [EG - F*dodB ®
D

where D is the domain of (¢,B). As (8) is not easily
minimized because of the square root operation, we
instead minimize

F.= [ (EG ~F*)dodB - ®
D

The validity of doing this can be proven as follows. First
we define

Eine;= VE§Gy— Fj

Ninej =
fori<M, j<N,and
£.=0, nk=0

for k >MN. Then, by the Cauchy-Schwarz inequality, we
know that

glﬁm;‘ S@m

where g. |§s|2 < oo and El I"JZ < oo as only finite number of

terms are nonzero. This then yields

MZN vEiGy— F; < MNMﬁI (EijGij - Fg) ’
1) i,j

which shows that the convergence of (9) implies the
convergence of (8). Therefore from (6), (7) and (9), the
total energy is given by

2
E(@) = X(ry—cy) /O'izj +
Ay 2 (ricos 20 + rf rf + rarjcos > @)

where r,and g can be approximated using forward finite

, (10)

differences. Although there are many methods to attempt
minimization of (10), we use a simple gradient descent.
The estimation ¢*; of every measurement g is as follows.

5= 25— cy) + Ay {4 rjcos’ o

CcosOl ? (1 1)
+ [2 %] (I‘i,j+1_1'i_i)2 -2 rizj (ri, i+ rij) +2 f’i", -1 (l‘ij I, j—l)] (_d;)
1 2
+ [2 Tij (l’m, j“rij)z -2 l'ij2 (rm_ ' ri,') +2 ri2—l,j (rij i1, ,)] (d-B) }
III. EDGE PRESERVATION

Incorporation of the regularizing term in energy, as shown
in (10), tends to suppress local change in the range image.
Although the smoothing function is good for suppressing
undesired noise, it also degrades important features such
as edges, corners, and segment boundaries. Using an
additional energy term to preserve discontinuity, however,
makes the minimization very difficult in general. Instead,
we use the results of 2D edge analysis to adaptively weight
the smoothing factor A so that edges are preserved during
the regularization.

Although there are various simple edge enhancement



filters, we use the optimal edge enhancer [9], which
guarantees both good detection and localization. Let 8

represent the (j, j) -th pixel of Gaussian filtered version of
Ty and let J_(j,j) and 1,6, be the gradient component
of g in the horizontal and vertical directions,

respectively. Then the optimal edge strength image can be
obtained as

e, (i) =3, G+, G- (12)
The regularizing term in (10) can adaptively be weighted
as in {10] using

Ay=— (13)
1+6e,% (i, j)
where 0, 0<0O<1, represents a parameter that

determines sensitivity of edge strength, and Kk is a scaling
parameter.

The selection of k generally depends on the desired
data compatibility as well as the level of noise reduction.
Since the stabilizing term in the energy function has a
much larger scale than the data compatibility term, k is
very small in our application. Here we introduce a method
to approximately estimate k. We determine a k so that
the average relative adjustment (ARA) from the observed
range value is in the same range as that produced by other
popular techniques, such as median filtering, which we
employ in our experiments. For one example image, the
ARA was found to be 0.44% after applying 3x3 median
filtering twice. We select k to make the ARA smaller than
median filtering method. For example, the ARA was found
to be 0.25% after 50 iterations using the regularization
method for the same image. In experiments we found that
the regularization method does not suppress impulsive
(salt and pepper) noise effectively. We therefore apply
median filtering twice, prior to regularization. For the
example image we have been discussing, the ARA was
found to be 0.50% after median filtering twice and 50
iterations of regularization. This is comparable to the ARA
produced using only median filtering.

IV. EXPERIMENTAL RESULTS
Experimental results from minimizing (10) are shown
here. Fig. 1 shows the raw, unprocessed data and Fig. 2
shows the corresponding, non-adaptive regularization
results. The median filtered result, the edge map, and both
non-adaptive and adaptive regularization results are shown
in Fig. 3. Note in Fig. 3 the wires on the cubicle wall
behind the monitor that are preserved by the adaptive
regularization.

Equation (11) is obtained by approximating ry and rp
using

I‘a:dla(ri,jﬂ—rij) and r‘,:iﬁ-
If we instead use three point polynomial interpolation to

(14)

(ryy— 1)

746

estimate r, and rg, such as,
1

fa™ 2do (rijor = 115-1) and = Eﬁ (rier,j—rict,p)? a1s)
we will have an estimation formula:
r's=2r5—c) + As{drjcos o
2 (16)

+[2ry (ri,_‘rﬂ-ri,j-l)z "21‘.2,}+l Gip2—rp+ 21“12,,'-1 (r; ‘ri,j-z)](%s)
1 2
+[2ry (ﬁﬂ,j_n—Lj)z -2 1“|2+x_j (T2~ + 2r32-\.j(rij - ri—zj)](—Zd’ﬁ) }
In our experiments, (15) makes the minimization more
robust and k can be set large to speed up the convergence.
One iteration using (16) achieves almost the same
smoothing result as the 50 iterations using (11). Fast
convergence makes the algorithm more attractive in real
world applications.
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Fig. 3: Median filtered result (top left), edge map (top right), non-adaptive regularization
result (bottom left), and adaptive regularization result (bottom right).
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