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ABSTRACT 

Previously. we derived sensor optimal prefilters for 
image interpolation. The prefilters were applied 
prior to integer interpolation with a standard (e.g., 
linear or cubic) kernel. Here we expand upon that 
notion and construct complete, seiisor optimal in- 
terpolation kernels for rational interpolation fac- 
tors. After restating the interpolation problem in 
a recpiisti uction-like fashion, we employ a simple 
model of the image capture system to derive the 
h4hISE interpolator. Results indicate significant 
subjective improvements over cubic interpolation, 
for little extra computation. 

1. INTRODUCTION 

Iniagc interpolation is an iiiiportaiit task in many 
applications. Some examples include professional 
and consumer imaging software as well as texture 
mapping for 3D scene reconstruction. If infornia- 
tion about, the system used t,o capture a given im- 
age is known, it seeins reasonable to expect that  
such information could be used to improve the in- 
terpolation of that  image. As noted in [I] ,  other 
researchers [a. 31 have considered this problem be- 
fore, although in a different fashion than we do. A 
siniilar approach to  what we present here can be 
found in [4]. Our technique differs from [4] in that 
we eniploy a rioriseparable image covariaiice riiodel 
and additionally construct the interpolation kernels 
inthe spatial domain - the Wiener restoration filters 
in [4] are found in the Fourier domain. windowed, 
then sampled to provide the spatial domain kernels. 

To use knowledge of the capture system, we 
first pose the image interpolation problem in a 
reconstruction-like manner as follows: T h e  given 
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Figure 1: Equivalent forins of optimal prefiltering 
followed by integer interpolation. 

image  i s  the  observation of a scene captured by a low 
resolution sensor .  An interpolated image  i s  sought 
th,at i s  a n  observation of t he  s a m e  scene ,  captured by 
a higher resolution sensor .  Such an interpretation 
has been previously mentioned in 12. 3 ,  5: 61. 

2. PROBLEM FORMULATION 

In the optimal prefiltering approach from [ 11, we ap- 
plied a prefilter, upsampled (by an integer factor), 
and then interpolated. When the interpolation is 
implemented by a linear, shift invariant filter (e.g., 
cubic or linear interpolation). the entire process is 
equivalent to upsampliiig and filtering with a mod- 
ified interpolation kernel, as shown in Fig. 1. The 
modified interpolation kernel, s(n), is given by 

s(n) = ( t h r  * s ) (n)  (1) 

where tAf(n) is the prefilter, t (n) .  upsampled by a 
factor of M: 

t(n/Al) : n = Mk. k E 2Z x Z. 
: otherwise. 

With this in mind. a more complete approach is 
to find an optimal interpolation kernel, rather than 
.just a prefilter. We turn our attention to this prob- 
lem now, explicitly considering sensor noise and 
rational interpolation factors as well. ru’ote that 
bold faced indices herein indicate two-vectors - i.e., 
n = (n1,nZ) E ;Z x Z. 
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Figure 2 :  Discrete approximation of the image cap- 
ture system. 

.Figure 3: Interpolation with s t o  provide optimal 
estimate, f^(n),  of the desired, high resolution im- 
age. 

To incorporate sensor knowledge into the interpo- 
lation problem, we must assume a model of the im- 
age capture systeni(s). As described in [7],  many of 
the effects in a real-world, image capture system are 
nonlinear and/or shift-varying. Despite this fact. 
we have found the simple, discrete model shown in 
Fig. 2 to be concise and effective in our research. 
The terms h l ( n )  and ha(n) represent FIR blurs, 
where the high resolution blur, hl(n), is more spa- 
tially localized than the low resolution blur: h,(n). 
The term u(n)  represents additive noise from the 
low resolution sensor. Note that P and L ,  where 
P < L ,  are assumed to  bc relatively prime. 

The problem now is to find an interpolator s ,  as 
shown Fig. 3, that  provides an optimal estimate, 
f (n ) ,  of the desired, high resolution image f (n ) .  
Note that 6 (n)  in Fig. 3 refers to a ( n )  of Fig. 2. 
Given Figs. 2 and 3, we seek s to minimize 

Ef(n)  = E { ( f ( 4  - i (n ) )2}  (3)  

for all n .  We assume that c(n) is wide sense sta- 
tionary (WSS) with covariance r,,(k) and that the 
noise, v (n) ,  is uncorrelated with c(n) .  Under the 
assumption that c(n) is WSS, both g(n)  and f ( n )  
are also WSS since decimation preserves WSS. (It is 
well known that WSS is not necessarily an accurate 
assumption for image processing. Such limitations, 
however, can be addressed with adaptive interpola- 

. . .  . . .  . . .  

Figure 4: Bank of optirrial interpolation filters. 

tion algorithms [8].) 
In tackling this problem, there are two issues that 

we consider. First! note that  finding s to minimize 

(4) 

for all n effectively minimizes E f ( n )  of (3) for all n 
as well. This is evident since the b1XISE at every n 
is unique. This fact will make our derivations sim- 
pler since we can neglect the factor of P decimator 
in Fig. 3.  In other words, the optimal interpolator 
for factor of L interpolation is also optimal for L I P  
interpolation. The second issue is that  the input to 
the interpolator - q(n) into s in Fig. 3 - is riot sta- 
tionary because of the factor of L upsampler. We 
address this issue in the next section. 

3. SOLUTION 

As the input to the iiiterpolator s is riot stationary, 
the standard Wiener filter solution is not immedi- 
ately applicable. We can proceed in two ways that 
are in fact equivalent. For brevity, we describe only 
our intuitive approach herc. Another, more rigor- 
ous approach can be carried out using properties 
of random processes in multirate systems 191, i.e., 
cyclic Wiener filtering [IO]. Using a few multirate 
identities, it can be shown that the two approaches 
yield equivalent results [8]. To prevent excessive 
notation, we will limit our presentation in this sec- 
tion to signals over a single index - i.e.: rather than 
g(n)  with n = ( n l ~  nz) ,  wc will consider just g ( n ) .  
The extension to images (signals over two indices) 
is straight forward. 

Referring again to  Figs. 2 and 3, we seek s to esti- 
mate U(.) given g(7t). The signal U(.) is sampled at  
L times the rate of g(n), so for every sample of g(n)  
we must estimate L samples of u(7~) .  Although q(n) ,  
the L-upsampled version of g(n) .  is not stationary, 
both g ( n )  and a ( n )  are. This leads us to propose an 
optimal interpolator composed of a bank of L (FIR) 
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Figure 5: Equivalent forms for a section of the ith 
branch in Fig. 4. 

filters, where each such filter, s,, produces the es- 
timate &(n)  = &(Ln - i) for i = 0,1,. . . , L - 1. 
The L polyphase processes denoted by &(Ln - i) 
must then be appropriately interleaved to produce 
the complete estimate ii(n). This process is illus- 
trated in Fig. 4, where the filters s 2 ( n )  are repre- 
sented by their z-transforms, S, (z ) .  

Finding each optimal interpolation kernel s, is 
just a ubiquitous Wiener filtering problem. Letting 
each s, be a 2N + 1 point FIR filter (centered on the 
origin), the optimal coefficients arc found by solving 
the normal equations 

N 

.2(m)rgg(k - m) = Cg(k) ,  (5) 
m = - N  

for i E [O, L - 11 and k E [-N, NI, where 

and where 

r ; , ( k )  = E { a ( L n  - i )g(n + k ) }  . (7) 

With known sensor and covariance models, (5)-(7) 
lead to L linear systems with 2 N  + 1 unknowns each 
that can be solved to  yield the coefficients of s , (n)  
for n E [ - N , N ]  and i E [O,L - 11. 

Although we have found a bank of L filters, it is 
interesting to note, and perhaps evident from Fig. 4, 
that this bank can be expressed as a single, time in- 
variant filter. Using a common niultirate identity, 
the zt" branch of Fig. 4 can be represented in the 
equivalent form of Fig. 5. Applying the identity of 
Fig. 5 to each branch (and moving the common up- 
samplers out) ,  it can be seen that Fig. 4 is equivalent 
to  Fig. 6. Finally, we can collapse the branches of 
Fig. 6 to get Fig. 7, where the single filter is given 
by 

L-1 

S ( z )  = c z - Y , ( z L ) .  ( 8 )  
2 = 0  

In other words, the optimal filters S2(z) for i = 
0 , 1 , .  . . , L - 1 are just the L polyphase components 
of a single filter S(z ) .  Although the polyphase im- 
plementation is more computationally efficient, the 
representation as a single, time invariant filter per- 
mits us to display and examine a single impulse re- 
sponse and/or frequency response. 

e 
e m  

e e .  
e m e  

Figure 6: Equivalent representation of the optimal 
interpolation bank in Fig. 4. 

U U 

Figure 7: A single, shift-invariant filter for optimal 
interpolation. 

4. RESULTS 

We employ the following forms for the sensor blurs 
from Fig. 2: 

where NI and h/z are norinalization factors so that 
the impulse responses sum to one after truncation. 
Additionally we assume a nonseparable, exponential 
covariance model [ll] for c(n) from Fig. 2: 

rcc(k) = p m .  (10) 

As an example, we consider a factor of L = 4 
optimal interpolator using the sensor blurs from (9) 
with T~ = 1.3 and 72 = 0.10. The noise variance was 
chosen to be 0,' = 0.01 and p from (10) was 0.95. 
The size for each of the (polyphase) component in- 
terpolators was chosen to  be 13 x 13. The impulse 
response of the complete 52 x 52 kernel (polyphase 
components combined) is shown in Fig. 8. The mag- 
nitude response of this kernel is shown as a sur- 
face in Fig. 9 and as an inverse grayscale image in 
Fig. 10. The unwrapped phase is shown in Fig. 11. 
Note that the complete kernel is not linear phase. 

Subjective tests were performed using the follow- 
ing rational interpolation factors: 

L / M  E (2,  3, 312, 4, 413. 5,512,  513, 514, 

7, 712, 713, 7/41. 
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I t  I I Polyphase I Complete I 
L 
2 

71 7 2  a,2 Size Size 
1 0.25 0.0020 7 x 7  14x14 

27x27 
4 1.3 13x13 52x52 
5 1.5 0.017 13x13 65x65 
7 1.5 0.025 0.034 17x17 119x119 

Table 1: Parameters used to compute optimal inter- 
polation kernels for various upsampling factors used 
in simulations. L indicates the upsampling factor, 
T~ and 3 indicate the parameters of Gaussian sen- 
sor blurs from (9): a i d  cr: indicates the variance of 
the noise term u ( n )  from Fig. 2. 

The various parameters used to compute the opti- 
mal interpolators are summarized in Table 1. Four- 
teen subjects were shown 42 pairs of images on a 
computer screen with a black background. Each 
image pair consisted of one cubic interpolated im- 
age and one optimally interpolated image - the type 
of intkrpolation was not indicated. The subjects 
recorded which of each pair they preferred. 

After discarding the most and least favorable sub- 
jects, 82% (412/504) preferred the optimally inter- 
polated images over the cubic interpolated images. 
Neglectiiig the data  for facial irnages, where a softer 
image is usually preferred, 87% (387/444) of the 
subjects selected optimal interpolation over cubic 
interpolation. These results indicate that signifi- 
cant subjective performance improvements can be 
obtained by interpolating with the sensor optimal 
kernels. Note that we do not include any example 
images in this paper as the reproduction process 
tends to degrade image quality. I t  is also worth 
uoting that the optimal interpolators, when imple- 
mented in polyphase form, require less computa- 
tion than unoptimized cubic interpolation, such as 
MATLAB‘S in t e rp2 (  . . . , ’*cubic’) function. 

5. CONCLUSIONS 

In this paper, we construct hlklSE interpolators 
based upon a model of the iinage captuie system. 
The optimal interpolation kernels are quite long 
compared to traditional kernels and exhibit nonlin- 
ear phase. Experiments indicate that optimal inter- 
polation outperforms cubic interpolation in terms 
of subjective image quality, without a significant in- 
crease in computational cost. 
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Figure 8: Impulse response of optimal interpolator 
(polyphase components combined) for factor of four 
interpolation. Figure 10: Normalized frequency response magni- 

tude, shown as image, for factor of four interpolator 
from Fig. 8. Black indicates 1.0, white indicates 0.0. 
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Figure 9: Normalized frequency response magni- 
tude for factor of four interpolator from Fig. 8. Figure 11: Phase of frequency response for the fac- 

tor of four interpolator from Fig. 8. 
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