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1. ABSTRACT 
 
This paper presents the results of the Spatial Signature Analysis (SSA) Electrical-test (e-test) validation study that was 
conducted between February and June, 1998.  SSA is an automated procedure developed by researchers at the Oak Ridge 
National Laboratory to address the issue of intelligent data reduction while providing feedback on current manufacturing 
processes.  SSA was initially developed to automate the analysis of optical defect data.  Optical defects can form groups, or 
clusters, which may have a distinct shape.  These patterns can reveal information about the manufacturing process.  Optical 
defect SSA uses image processing algorithms and a classifier system to interpret and identify these patterns, or “signatures”.  
SSA has been extended to analyze and interpret electrical test data. The algorithms used for optical defect SSA have been 
adapted and applied to e-test binmaps.  An image of the binmap is created, and features such as geometric and invariant 
moments are extracted and presented to a pair-wise, fuzzy, k-NN classifier.  The classifier itself was prepared by manually 
training, which consists of storing example signatures of interest in a library, then executing an automated process which 
treats the examples as prototype signatures.  The training process includes a procedure for automatically determining which 
features are most relevant to each class.  The evaluation was performed by installing the SSA software as a batch process at 
three SEMATECH member company sites.  Feedback from member company representatives was incorporated and 
classifiers were built to automatically assign labels to the binmap signatures.  The three sites produced memory devices 
(DRAM) and microprocessors in a mature process fabrication environment. For all of these products, 5,620 signatures that 
encompassed approximately 552 wafers were human-classified and analyzed.  The performance of the SSA E-test system 
indicates that the approach was successful in reliably classifying binmap signatures in a manner similar to the human expert. 
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2. INTRODUCTION 
As semiconductor device density and wafer area continue to increase, the volume of in-line and off-line data required to 
diagnose yield-limiting conditions is growing exponentially [1].  To manage this data in the future, analysis tools will be 
required that can automatically reduce this data to useful information, e.g., by assisting the engineer in rapid root-cause 
diagnosis of defect generating mechanisms.  In this report, we describe a technology known as Spatial Signature Analysis 
(SSA) and its application to electrical test binmap data. SSA is an automated procedure that has been developed by 
researchers at the Oak Ridge National Laboratory to address the issue of intelligent data reduction while providing timely 
feedback on current manufacturing processes [1].  SSA was initially developed to automate the analysis of defect data 
collected by in-line microscopy and laser scattering systems [2].  A successful validation of this optical-based SSA approach 
was performed in the Spring of 1997 and reported through SEMATECH [3].  This method has been extended to analyze and 
interpret electrical test data and to provide a pathway for correlation of this data with in-line optical measurements [4]. The 
image processing-based, fuzzy classifier system used for optical defect SSA has been adapted and applied to e-test binmaps 
to interpret and rapidly identify characteristic patterns, or "signatures", in the binmap data that are uniquely associated with 
the manufacturing process.  An image of the binmap is created, and features such as mass, geometric moments, and invariant 
moments are extracted and presented to a pair-wise, fuzzy, k-NN classifier [5].   
 

3. SSA OVERVIEW 
Optical inspection of semiconductor wafers has long been the primary means of investigating the sources of wafer defects.  
Semiconductor yield engineers use high-resolution images of individual defects collected off-line to assess problems in the 
manufacturing process.  Since high-resolution off-line defect review is time consuming and expensive, process engineers also 
                                                           
* T.P.K. (Correspondence): Email: karnowskitp@ornl.gov; Telephone: 423-574-5732; FAX 423-574-6663 
** Prepared by OAK RIDGE NATIONAL LABORATORY, Oak Ridge, Tennessee, 37831-6285, managed by LOCKHEED 
MARTIN ENERGY RESEARCH COPR., for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-
96OR22464. 



use low resolution defect wafermaps from in-line optical inspection tools to determine the potential source of problems in the 
manufacturing process.  They accomplish this by analyzing and sourcing unique spatial distributions or "signatures" of 
defects on the wafer surface.  A spatial signature is defined as a population of defects originating from a single manufacturing 
problem.  Even when the optical spatial signatures do not contain significant portions of killer defects (i.e., defects that result 
in electrical faults), they do provide a diagnostic window into the manufacturing process.  SSA attempts to emulate this 
process to provide the fabrication engineer with faster time-to-results, a critical requirement for effective yield learning and 
yield management. 
 
SSA automatically collects defects on a wafermap that come from a single manufacturing source.  A user-trained classifier 
assigns a label that identifies the root problem.  SSA begins the signature classification process by converting the electronic 
wafermap file into a gray-scale image where each pixel is assigned an intensity value according to the number of defects in 
the subtended area.  Each pixel represents a first level clustering of the individual defects.  Clusters of pixels, denoted as 
“objects”, in this density image are connected into multi-element objects (e.g., a multi-element scratch) by means of an 
advanced clustering procedure. Objects are grouped into high-level “sets” depending on their proximity to neighboring 
clusters and on their morphology[2, 6, 7]. 
 
Once an object has been assigned to a high-level set and characterized, its features are sent to a classifier where a user-
defined label is assigned to the result.  For this work, a pair-wise fuzzy k-Nearest Neighbor (kNN)[8] approach has been 
adapted  that uses a unique feature reduction procedure to optimize classifier performance [9].  For industrial pattern 
recognition problems where it is difficult to ascertain a statistical parameterization for the large variety of class types 
encountered, non-parametric classifiers such as nearest mean or kNN [10] apply well. Furthermore, in an industrial setting, it 
is often required that the classifier system begins to classify new data with few training examples. Also, over the period of 
time required to collect large sample sets, acceptable process variations can occur which confuse the boundaries between 
classes.  The pair-wise fuzzy kNN classifier training set can readily be maintained over time (e.g., by including and excluding 
examples based on time and date), and can operate adequately with relatively few examples for each class [11]. 
 
The SSA approach has been adapted to analyze e-test data.  Similar to optical defect wafermaps, e-test wafermaps in many 
cases contain characteristic patterns, or signatures, that give insight into the health of the semiconductor manufacturing 
process.  E-test wafermaps are commonly comprised of either bit data or bin data.  Wafermaps created from bit data are 
called bitmaps, while wafermaps created from bin data are referred to as binmaps.  Bit data result from performing electrical 
tests on the individual bits in a memory device, while bin data describe the results of electrical testing of individual die on a 
wafer. A bin can be viewed as a “bucket” classification into which all of the die that meet that classification fall.  The most 
intuitive e-test bins are PASS and FAIL.  Whether bit data or bin data are used, the e-test wafermap is created for viewing by 
“mapping” the results of these electrical tests onto a 2-D space.  All wafer data used for this validation are binmap data.  SSA 
Release 6.0 has the capability (at present) of analyzing only optical defect and e-test binmap data. 
 
 

4. VALIDATION EXERCISE 
1. Purpose 
SSA research was initiated between SEMATECH and Oak Ridge in 1995.  Initial development of the algorithms for 
signature segmentation and subsequent classification were based on early discussions with fabrication engineers and a broad 
spectrum of wafermap files donated to Oak Ridge by the various member companies.  The optical wafermap validation 
exercise was performed in the Spring of 1997 and this provided us with the ability to test the maturity of the research and the 
SSA C++ software library in three different manufacturing environments on three separate products: ASIC, DRAM, and 
SRAM.  The main goal of the 1997 validation was to prove the SSA technology in the fabrication environment for signature 
clustering and signature classification. 
 
The main goal of the current exercise for e-test data was to prove out the technology for binmap signature classification.  Due 
to the nature of binmap data (i.e., a binmap image is composed of coarse die locations as opposed to high-resolution defect 
data as shown in Fig.1), the SSA algorithm was not designed to break up the binmap data into separate clusters.  Each bin in 
the data is treated as a single signature.  The main goals of the validation exercise were to: 
 
• verify the signature classification process for final test, binmap wafer data in the fab environment, 
• better understand the application of SSA to final test data and the differences in needs expressed by the defect analyst 

and the final test analyst, 



• understand issues associated with integration of the analysis method into the fabrication environment and the plant yield 
management system. 

2. Site Selection 

(a) (b)  

Figure 1  (a) High resolution wafermap showing a spin-coater “streak” pattern.  (b) 
Final test binmap showing die (intensity coded) for each bin with a centrally heavy 
population of failed die. 

Site selection was initiated in December, 1997, by sending out an SSA Validation Statement of Work (SOW) requesting MC 
participation in the project.  Three sites were selected for participation.  Due to the proprietary nature of the data collected at 
these three sites, they will remain anonymous and uncorrelated to the site labels and the data to be described below. Also, 
specific information that could be used to derive or infer site-specific product yield has been intentionally omitted.  Figure 2 
shows the representative characteristics of the three sites in relation to the well-known yield curve.  The yield curve 
represents various levels of maturity in the manufacturing life cycle of a semiconductor device/product. 

 

 
SSA technology has applic
the curve is representative
manufactured and yield is
exploratory phase moves i
procedures to monitor a s
dominant source of concer
Y
ie

ld

Fault Density

Random & systematic Random

Products at the three sites were
•microprocessor
•mixed signal ASIC
•synchronous DRAM

Site 1

Site 2

Site 3

R
&

D

Pr
oc

es
s 

de
ve

lo
pm

en
t

Y
ie

ld
 le

ar
ni

ng

Y
ie

ld
 m

o n
it o

ri n
g

 

Figure 2 Representative characteristics of the 
three participating MC sites relative to the yield
curve. 
ation to most phases of process development and product manufacturing.  The left-most region of 
 of the exploratory R&D phase.  In this phase of process development, there are very few devices 
 not the driving issue.  At this stage, very little automation is required for data analysis.  As the 
nto the process development phase, higher wafer volumes necessitate the initiation of automation 
ignificant fraction of product.  During the process development stage, systematic events are the 
n and most prevalent.  Systematic events include mechanical wafer handling damage, plasma etch 



damage from arcing, systematic particle contamination during chemical vapor deposition, spin-on material contamination 
(e.g., glass, resist), and many other possible process related scenarios. 
 
As the process development cycle begins to mature, it progresses to the yield learning phase.  It is during this phase that the 
yield engineer will attempt to determine root-cause sources of systematic events and quickly eliminate them to increase yield.  
During this phase the number of wafers processed increases dramatically and SSA has the potential to very quickly assist the 
fabrication engineer in locating and correcting a large variety of problems in the manufacturing process.  The yield learning 
ramp is of critical importance to the manufacturer.  The rate at which yield learning is achieved is critical to the realization of 
a return on investment.  By analyzing the maximum number of wafermaps with SSA during this stage, it is anticipated that 
yield learning can proceed much more quickly and that yield-impacting events can be more efficiently localized and 
corrected. 
 
As the process matures over time, it enters the yield-monitoring phase.  At this point the process technology is mature and 
acceptable device yields are maintained.  A very small percentage of yield loss is related to systematic events for the 
controlled process and yield is primarily limited by random events, e.g., particles generated within process tools, or those 
originating from process gases and chemicals.  At this phase, wafer volume is high and systematic yield loss is hard to detect.  
While SSA provides its main analysis advantage by monitoring single wafers during the yield learning phase, it will provide 
continued automatic capabilities during the yield monitoring phase by detecting subtle systematic events by overlaying 
multiple wafers together over single or multiple lots.  It can also be used to monitor population statistics of random events.  
All three participating MC sites for the evaluation were operating in the yield-monitoring region of the curve. 
 
3. Software 
To support a concurrent validation effort at three manufacturing sites, it was necessary to develop a background batch SSA 
E-test software system that was capable of automatically processing and reporting on binmaps.  It was also necessary that a 
viewer be developed which allowed the participants to document their comments on the efficacy of the procedure for the 
correct classification of events.  This was accomplished in two steps as described below. 
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Figure 3 Schematic representation of the 
ssawatch batch processing system that 
automatically processed binmap files and e-
mailed daily summaries to the participants. 

 
Figure 3 shows a schematic representation of the background processor that was developed denoted ssawatch.  The software 
ran continuously in the background on a Sun workstation and would periodically check for the arrival of new binmap files 
coming from the in-line inspection tools.  As new binmap files arrived in the directory, they were processed and the SSA 
results were placed in a destination directory.  On start-up, the ssawatch program took a resource file as input which 
established critical timing parameters such as where and when to check for new maps, which SSA electronic signature library 
(ESL) file to use, and when and where to send e-mail summaries for process results from the previous period (typically every 



12 hours.  Note that the ESL contains labeled training samples of the various binmap signatures along with other classifier 
parameters.  These files were generally unique to each site. 
 
While this process ran continuously without the need for human intervention, it was required that the SSA results files be 
periodically reviewed by the participant on a regular basis for commentary.  As mentioned above, this commentary was used 
to build and train an ESL file.  Figure 4 shows the next step in the validation process.  After the SSA-processed binmap files 
were placed in a results area (WATCH_DEST__VALID_INPUT_DIR in Fig. 3 and Fig. 4), about once or twice a week the 
user would run a separate interface tool called etest-validation that provided them with a convenient interface for viewing the 
wafermaps.  The display tool showed the results file as a series of bin images with classification information.  The user could 
opt to comment on the signatures or to move the file to a “no comment” area.  Usually if a wafer had a normal or typical 
pattern of defects, no comment would be necessary, yet it was requested that all maps from the selected manufacturing 
process be sent to Oak Ridge for evaluation.  Approximately once per week, the participant would log into a private account 
established on the Oak Ridge network and deposit their commented and uncommented binmaps for further analysis.  These 
binmaps were used to develop and update an appropriate ESL for the different sites, and to perform a statistical analysis of 
the SSA performance. 
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Figure 4 Once the ssawatch software processed 
the binmaps, the user would supply comments 
on the maps using the etest-validation tool prior 
to sending the data to ORNL 

 
 
4. Method 
The validation statistics that are detailed in Section 5, Results, were generated from the commented and uncommented 
wafermap files sent to Oak Ridge from the three sites during the course of the validation.   A program was written that would 
read all of the result files in a specified directory and output a flat ASCII file containing the various summary information 
needed to determine SSA performance. 
 
Once the ASCII data file was obtained it was read into a Microsoft Excel spreadsheet.  In the spreadsheet format, the data 
could easily be sorted for further analysis according to different parameters of interest.  This analysis included the writing of 
a visual basic macro for generating confusion matrices as shown in Fig. 5.  The confusion matrix gives a great deal of 
information regarding the classification of defects in a simple matrix format [10].  As shown in the figure, rows represent the 
actual class of the data (the “i” index in the equations), i.e., as classified by the user (note that the user classified data also 
contains classification error which is not folded into this analysis).  The columns of the array represent the SSA-assigned 
class (the “j” index in the equations).  By summing across a row, the actual number of samples of a particular class are 
ascertained.  The diagonal elements of the matrix contains the number of signatures for each class that have been correctly 
classified by SSA.  Therefore, the ratio of the diagonal element to the sum of the row gives an estimate of the performance of 
the classifier for that particular class. 
 
 



The purity of a SSA classification decision is another indicator of the efficacy of the method.  Purity is determined for a class 
by taking the ratio of the diagonal element to the sum of the column.  While performance is a measure of how often the 
correct class was predicted by the system, purity is a measure of how often the classifier’s prediction was correct. 
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Figure 5 Example confusion matrix used to 
describe the statistical performance of the 
classifier.

 
5. RESULTS 

1. Summary 
Table 1 gives a summary of classifier performance at the three manufacturing sites.  There are two values of performance 
reported in the table: “total weighted performance” and “total unweighted performance”.  The first of these measures is 
weighted by the number of actual samples collected for each class.  This metric allows the signatures of highest occurrence to 
carry the most weight in the performance estimate.  The later measure assumes equal weight for each class.  This is more 
indicative of performance assuming that every defined signature type is of equal importance.  The metric that is “most 
correct”, or most representative of the system performance, depends on the point of view of the reader.  For this reason, both 
metrics are reported. 

Table 1 – Summary of SSA E-test classifier performance for the three 
participating MC sites determined during the validation exercise. 

 SITE 1 SITE 2 SITE 3 
Total Weighted 
Performance 

79% 84% 72% 

Total Unweighted 
Performance 

74% 81% 64% 

Average Purity 69% 80% 66% 
No. of Defined Classes 9 15 11 
No. of Signatures (Bins) 
Analyzed 

2004 2105 1511 

Average No. of Bins per 
Wafer 

7 30 7 

Approximate No. of Wafers 286 70 196 
 

 
 
 
 
 



2. Training Data 
The SSA E-test system is trained using a small sample population of signatures.  The training library contains examples from 
each class defined by the user for their site, typically on the order of 5 to 15 samples.  The system performs a training 
optimization procedure that provides useful feedback to the operator on the efficacy of their class definitions and the 
examples that they placed in each category.  Figure 6 shows the final training results from each of the three sites. 
The top region of the figure, (a), shows the user-defined class labels followed by the number of examples that were selected 
for each category.  The second region, (b), contains the credit, hold-one-out (HOO) performance, and the resulting 
defuzzification value.  The credit is the amount of user credit given to the classifier whenever classification of “unknown” is 
assigned to a data sample.  The “unknown” designation means that the classifier does not have enough confidence to assign a 
crisp class to the particular sample.  The HOO performance is also known as the expected performance and it is an estimate 
of how well the trained classifier will perform in the field when exposed to new data.  Our experience has been the actual 
field performance is slightly lower than the expected performance in most instances.  This is due to the fact that samples are 
collected for training over a short period of time while field use takes place over a longer period thus allowing for some drift 
in the nature (e.g., morphology) of the signature data.  The final value is the defuzzification threshold.  When the SSA fuzzy 
classifier assigns a crisp label to the signature, the signature’s membership value must be greater than the defuzzification 
threshold, otherwise the signature is assigned to the “unknown” category. 
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Figure 6 Results of training the E-test classifier for validation sites. (a) 
Labels assigned and the number of examples. (b) Hold-one-out (HOO) 
data  (c) confusion matrix.  
 

 
The final region, (c), contains the confusion matrix for the HOO classifier optimization.  The right-most column in the 
confusion matrix contains the number of training samples that the classifier did not have confidence in labeling during 
training. 
 
The following figures illustrate details for validation testing at each site.  Figure 7 graphically shows the signature categories 
collected at each site for the user-defined classes.  Each row in the figure represents a user-defined class of data.  The goal of 
including these signature figures is to give the reader an indication of the variety of classes defined by the validation 
participants during testing.  Table 2 gives the confusion matrix for all hand-labeled test data collected at Site 1.  Figures 8 and 
9 and Tables 3 and 4 shows similar detail for validation Sites 2 and 3 respectively.   
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Figure 7 – Image of the user-defined classes selected for Site 1.  Each row corresponds to a 
single user-defined class. 
 

Table 2 – Confusion matrix generated from the 2004 hand-labeled test signatures collected 
at Site 1.  

SITE 1 full hvy_random edge_group sparse_scratch lt_random
full 188 0 0 0 0
hvy_random 0 77 12 0 0
edge_group 0 23 128 1 0
sparse_scratch 0 6 2 80 0
lt_random 0 1 2 22 878
horiz_scratch 0 4 0 7 0
med_random 0 2 7 20 29
radial 0 1 2 1 1
busy_scratch 0 2 3 0 0
Purity 100.00% 66.38% 82.05% 61.07% 96.70%

Total Unweighted Performance 73.71%
Total Weighted Performance 79.09%
Credit 0.5

Approx. no. of bins/wafers 7
Approx. no. of wafers 286
Total Signatures in Data Set 2004

horiz_scratch med_random radial busy_scratch UNKNOWN Class Performance
0 0 0 0 0 100.00%
0 0 0 12 2 75.73%
4 2 4 14 30 69.42%
3 7 1 1 9 77.52%
8 125 1 0 20 84.01%

19 8 3 0 11 47.12%
0 71 1 2 47 52.79%
0 1 35 5 18 68.75%
0 0 0 40 1 88.04%

55.88% 33.18% 77.78% 54.05%
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Figure 7 - Image of the user-defined classes selected for Site 2.  Each 
row corresponds to a single user-defined class. 

Table 3 - Confusion matrix generated from the 2105 hand-labeled test signatures collected 
at Site 2. 

SITE 2 3/4_wafer open_left_ring edge_arc light_random top_clusters sparse_donut light_uniform cen_cluster vert_pairs
3/4_wafer 63 0 0 0 0 0 0 0 0
open_left_ring 0 20 0 0 0 0 0 0 0
edge_arc 0 0 19 1 0 2 1 0 1
light_random 0 1 11 1105 1 4 31 1 12
top_clusters 0 0 1 0 42 1 2 1 0
sparse_donut 0 0 0 0 0 26 0 1 0
light_uniform 0 0 1 8 0 5 114 2 7
cen_cluster 0 0 0 0 1 1 0 38 0
vert_pairs 0 0 0 0 0 1 1 0 24
small_dash(es) 0 0 1 0 0 0 5 0 8
thin_left_ring 0 0 0 0 0 0 0 0 0
ll_clusters 0 0 0 0 1 1 0 0 0
thick_left_ring 0 0 0 0 0 0 0 0 0
bottom_left 0 0 0 0 0 1 0 0 0
bottom_heavy 0 0 0 0 0 0 0 0 0
Purity 100.00% 95.24% 57.58% 99.19% 93.33% 61.90% 74.03% 88.37% 46.15%

Total Unweighted Performance 81.48%
Total Weighted Performance 83.87%
Credit 0.5

Approx. no. of bins/wafers 30
Approx. no. of wafers 70
Total Signatures in Data Set 2105

small_dash(es) thin_left_ring ll_clusters thick_left_ring bottom_left bottom_heavy UNKNOWN Class Performance
0 0 0 0 0 0 0 100.00%
0 0 0 0 0 0 0 100.00%
0 0 0 0 3 0 40 58.21%
8 0 0 0 1 0 187 88.00%
0 0 0 0 8 0 8 73.02%
1 0 0 0 7 1 5 69.51%
7 0 0 0 5 0 78 67.40%
1 0 0 0 0 0 11 83.65%
0 0 0 0 0 0 4 86.67%

44 0 0 0 2 0 20 67.50%
0 27 0 0 0 0 0 100.00%
0 0 7 0 0 0 0 77.78%
0 0 0 38 0 0 0 100.00%
0 0 0 0 18 0 2 90.48%
0 0 0 0 2 3 0 60.00%

72.13% 100.00% 100.00% 100.00% 39.13% 75.00%

 
 



Site 3 Training Signatures

 

Figure 8 - Image of the user-defined classes selected for Site 3.  Each row corresponds to 
a single user-defined class. 
 

Table 4 - Confusion matrix generated from the 1511 hand-labeled test signatures collected 
at Site 3. 

SITE 3 bullseye random low_random small_scratch rectangle streak high_random edge_wipe_out
bullseye 34 0 0 0 0 0 8 0
random 0 245 24 13 2 26 0 6
low_random 0 83 442 0 2 0 0 0
small_scratch 0 22 0 71 5 1 0 4
rectangle 0 21 0 1 29 0 0 0
streak 0 3 0 3 0 50 1 3
high_random 17 1 0 0 0 3 56 0
edge_wipe_out 0 4 0 1 0 13 0 42
top_hd 0 3 0 0 0 6 0 0
center_wipe_out 3 2 0 0 0 3 2 0
bottom_hd 1 2 0 0 0 5 1 0
Purity 61.82% 63.47% 94.85% 79.78% 76.32% 46.73% 82.35% 76.36%

Total Unweighted Performance 64.44%
Total Weighted Performance 72.17%
Credit 0.5

Approx. no. of bins/wafers 7
Approx. no. of wafers 216
Total Signatures in Data Set 1511

top_hd center_wipe_out bottom_hd UNKNOWN Class Performance
5 1 0 3 69.61%
0 8 1 30 73.24%
0 0 0 0 83.87%
0 5 0 14 63.93%
0 2 0 4 54.39%
7 2 2 15 66.86%
4 6 3 16 60.38%

11 0 4 18 54.84%
25 0 0 3 71.62%

0 28 0 10 68.75%
2 5 11 2 41.38%

46.30% 49.12% 52.38%



 
3. Discussion  
The results presented in previous sections of an average overall system performance of 75% (70%) are encouraging. 
Generally, a human classification expert is approximately 70% reliable classifying process defects and signatures.  Since the 
classification data provided during this validation exercise has higher overall consistency than typical field data (due to the 
short-term and focussed nature of this work), it is asserted that the SSA system performs as well or slightly better than the 
average field engineer.  In addition, the SSA E-test system provides the benefits of an automated computer vision application 
such as robustness, reliability, and continuous, uninterrupted operation of the system over extended periods of time. 
 
The performance of the system at Site 3 deserves further discussion.  The total performance reported for Site 3 was lower 
than either Site 1 or 2.  It is believed that the lower performance is related to two issues:  (1) the coarseness of the bin patterns 
due to the fewer number of die per wafer, and (2) the means by which SSA-E-test considers clustered data.  SSA is an image 
processing tool that relies on the image of the bin data to perform feature analysis.  A wafer with few die will look to the 
system like a low-resolution image and therefore the feature descriptions will effectively be “blurred”.  This effect also folds 
into the second issue associated with clustering.  Since e-test data is presented to SSA on the die-level, as opposed to defect 
data which has resolution on the order of the sub-die level, it was determined from early testing (prior to the field validation 
exercise) that it would be problematic to segment the wafermaps into smaller groupings, or clusters, of die patterns.  
Although this will be discussed further, the result for Site 3 data was to cause confusion between classes such as “small 
scratch” and “random” since a “small scratch”, as defined by the user, could be contained in a “random” (or other) pattern. 
 
Due to an apparent need to accommodate some level of clustering at all sites, a technique was adopted and integrated into the 
SSA system. A simple extension of the SSA E-test approach to accommodate some level of clustering was achieved by 
measuring binmap features as follows: a measurement of features from the whole wafer was performed; next, a measurement 
of features from the largest connected group of dies was performed; and finally, a measure of the wafers features was 
performed when all single, unconnected die were removed. This extended list of features was used to describe the wafer in 
the classification process.  
 
At least two of the test site participants had made classification comments on wafers that were related to the particular failed 
bin code.  For example, some die patterns had one meaning when they had a certain bin code and different definitions when 
in another bin.  SSA E-test does not currently take into account a bin-dependent classification method.  A similar occurrence 
occurred during optical defect SSA validation where a user wanted to classify a pattern based on the process layer. This was 
easily implemented in the commercial version of SSA by allowing a layer-dependent library to be created by the user.  This 
same approach can be taken to accommodate a bin-specific library in future integrations of SSA E-test in the manufacturing 
environment. 
 
The elemental set approach used for optical defect SSA allowed the classification problem to be defined as four simpler 
problems and therefore the system could run more efficiently and be trained fairly easily (the elemental grouping of the data 
was performed transparently to the user).  With SSA E-test, there is only one classifier that is developed by the user.  It was 
noted during this testing that the definition of a signature library was more difficult than in optical defect SSA.  This was 
likely due to several issues.  The inability to place signature examples into different clustered categories (due to the inherent 
coarseness of binmap data) made it difficult for the user to logically separate some signature types into unique, well-defined 
groups.  Also, the training method for the SSA E-test system provides feedback to the user on how well the classifier is 
expected to perform in the field (i.e., when exposed to data not seen prior to training).  To achieve good expected 
performance during training, it was typically required that the user reduce, or simplify, the number of defined classes, i.e., 
good performance could sometimes be achieved only at the cost of good class resolution.  Finally, the lack of several 
elemental categories can result in a signature library that contains many classes and training examples.  A more complex 
classification library can result in longer processing times and more complexity in the decision-making process. 
 

6. CONCLUSIONS 
The SSA E-test validation exercise was able to successfully demonstrate the concepts and issue associated with the automatic 
classification of e-test, binmap data.  The overall reported efficacy of 75% (70%) is very encouraging and shows that the 
system can work in the manufacturing environment to the level of its human counterpart for a well-defined set of binmap 
signature classes.  It is hoped that the data presented in this report will prove useful to those licensees of the SSA Defect and 
E-test system and will provide them with a fair and accurate understanding of both the benefits and limitations of the 
technology. 
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