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Abstract-- This paper describes a vision-based
fabric inspection system that accomplishes on-
loom inspection of the fabric under construction
with 100% coverage. The inspection system,
which offers a scalable, open architecture, can be
manufactured at relatively low cost using off-the-
shelf components. While synchronized to the
motion of the loom, the developed system first
acquires very high-quality, vibration-free images
of the fabric using either front or backlighting.
Then the acquired images are subjected to a novel
defect segmentation algorithm, which is based on
the concepts of wavelet transform, image fusion,
and the correlation dimension. The essence of this
segmentation algorithm is the localization of those
events (i.e., defects) in the input images that dis-
rupt the global homogeneity of the background
texture. The efficacy of this algorithm, as well as
the overall inspection system, has been tested
thoroughly under realistic conditions. The system
was used to acquire and to analyze more than
3700 images of fabrics that were constructed with
two different types of yarn. In each case, the per-
formance of the system was evaluated as an oper-
ator introduced defects from 26 categories into
the weaving process. The overall detection rate of
the presented approach was found to be 89% with
a localization accuracy of 0.2 in. (i.e., the mini-
mum defect size) and a false alarm rate of 2.5%.

Index Terms-- Textile Industry, Fabric Inspection,
Computer Vision, Real-Time Systems, Wavelet
Transform, Defect Detection, Quality Assurance,
Process Control

I. INTRODUCTION

Measurement of quality during the production of
woven fabrics is highly important to the textile
industry in lowering costs and improving the finished
product. Presently, much of the fabric inspection is

performed manually by human inspectors and using
off-line stations. Many defects are missed, and the
inspection is inconsistent, with its outcome depend-
ing on the training and the skill level of the person-
nel. As a result, the textile industry has been moving
toward automated fabric inspection. An automated
fabric inspection system can provide consistent
results that correlate with the quality-control stan-
dards of the textile industry. Up to this point, most if
not all of such automated technologies have been off-
line (or off-loom), inspecting large rolls of fabric
after they have been produced. To provide the most
precise control of quality, however, the fabric must
be monitored as it is constructed so that corrections
can be made immediately to minimize the quantity of
poor-quality fabric. In addition, higher production
speeds make the timely detection of defects more
important than ever.

There are more than 50 identified categories of
fabric (weaving) defects in the textile industry. It is
interesting to note that approximately 80% of these
defects have a preferred orientation, either in the
direction of motion (i.e., warp direction) or perpen-
dicular to it (i.e., pick direction). Many defects are
caused by machine malfunctions, while others are
due to faulty yarns. For air-jet looms, which are the
most widely used, the predominant defects are
mispicks (missing or broken pick yarns), end-outs
(missing or broken warp yarns), and slubs (or waste).
These looms, as well as other less widely used
looms, may have machine faults that produce other
defects, such as holes, oil spots, or dirt. These
assorted defects can produce a wide range of visible
effects on the finished fabric and render it off-quality.
Warp or pick defects tend to be long and narrow,
slubs can produce point defects, and moiré defects
change the apparent texture of the weaving pattern.

Automation of fabric inspection has been a topic
of considerable research. The inspection systems are
predominantly optically based and primarily use
either line-scan [1-3] or area [4] sensors for image

VISION SYSTEM FOR ON-LOOM FABRIC INSPECTION

Hamed Sari-Sarraf, Member, IEEE, and James S. Goddard Jr., Member, IEEE
Oak Ridge National Laboratory

Research supported under the AMTEX Cooperative Research and Development Agreement at the Oak Ridge National Laboratory, man-
aged by Lockheed Martin Energy Research Corporation for the U.S. Department of Energy under contract DE-AC05-96OR22464.
1



acquisition. Complete real-time systems have been
developed that emphasize the high-performance
image acquisition and computing hardware require-
ments for discrete defect detection and classification
[5,6]. Also widely reported are the image analysis
methodologies, including those based on textural
models for defect detection [7,8], as well as neural or
knowledge-based techniques for defect classification
[9-11]. Real-time defect detection approaches using
the wavelet transform and fuzzy inferencing have
also been described in [4,12].

The fabric inspection system, which was devel-
oped by the authors in early 1995 and is presented
here, differs from existing systems in two crucial
ways. First, it is on-line or on-loom; and second, it is
equipped with a novel defect segmentation tech-
nique, which has been thoroughly tested under realis-
tic conditions and found to have a high detection
rate, high accuracy, and a low rate of false alarms.
The results of comparably extensive tests have yet to
be reported for the competing systems or for segmen-
tation algorithms. The defect segmentation technique
reported in [12] is noteworthy, as it takes our idea of
preprocessing the fabric images using the wavelet
transform to the next logical step by suggesting an
optimal derivation of the wavelet bases. However,
where we use the wavelet transform only as a prepro-
cessing tool, this approach uses it as the primary
means for defect detection.

In what follows, we describe the proposed fabric
inspection system in terms of its image acquisition
subsystem and its defect segmentation algorithm.
The results of an extensive test for evaluating the per-
formance of this system have also been included.

II. FABRIC IMAGE ACQUISITION

On-loom fabric image acquisition presents several
challenges to obtaining high-quality, high-resolution
images. One of these challenges is the isolation of
the mounting components from the considerable
vibration that is produced during loom operation.
Another is the irregular forward motion of the fabric
among the loom rollers after it is woven. Still another
is the challenge of designing an inspection system
whose cost-effectiveness can justify its use on many,
if not all, of the looms in a manufacturing mill.

As described in the following sections, each of
these challenges has been addressed and met in

developing our on-loom image acquisition sub-
system.

A. Hardware Description

The image acquisition subsystem is implemented
with standard components on a low-cost personal
computer. These components, shown in Fig. 1, con-
sist of a 4096-element, line-scan camera, which is
synchronized to the moving fabric by means of an
incremental encoder; a source of illumination for
backlighting the fabric; a DSP-based image acquisi-
tion and processing card with a single TI 320C40
chip; and a personal computer. The only custom-
made component in this subsystem is the camera-
encoder interface, which is used to extract the true
forward movement of the fabric from the highly
oscillatory motion of the loom and to enable accurate
image-line triggering for the line-scan camera. These
components are used to acquire high-resolution,
vibration-free images of the fabric under construc-
tion and to store them on the on-board memory of the
acquisition card. The software running on the DSP
board controls the image acquisition process and
accumulates a two-dimensional (2-D) image suitable
for the ensuing analysis (i.e., defect segmentation).
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Fig. 1. The hardware components used in the inspec-
tion system.
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B. Image Acquisition Operation

To extract the magnitudes and the frequencies of
the physical displacements, vibration measurement
and analysis were performed at potential mounting
locations on a test loom. This analysis indicated that
the most significant frequencies of interest were
above 100 Hz. As a result, a mounting fixture was
designed to attenuate the frequencies above this
value.

To measure the true forward motion of the fabric,
an optical incremental encoder was used. The actual
encoder measurements indicated that the motion was
quite irregular, but cyclical (see Fig. 2). Furthermore,
the data showed that while the average motion of the
fabric was in the forward direction, the fabric
remained stationary during a portion of each cycle
and, in some instances, even moved backward. To
accurately characterize this pattern of motion, the
camera-encoder interface monitors the encoder out-
put and provides a digital response that corresponds
to the true forward motion of the fabric. This circuit
implements a state machine that remembers the
backward motion signals. During operation, absent
any backward motion, the state machine produces an
output for every forward motion pulse from the
encoder. If backward motion occurs, however, each
backward pulse is counted, but no output is pro-
duced. With subsequent forward motion, the back-
ward count is decremented at each forward pulse,
again with no output. When the count reaches zero,
the output is resumed for each forward pulse. The
line-scan camera, which is synchronized to this for-
ward output signal, produces a line of data when the
fabric has moved forward by an amount correspond-
ing to the prespecified inspection resolution.

During image acquisition, the camera exposure
time is designed to be fixed, regardless of the loom
speed. The fixed exposure time is realized by the
exposure time control of the camera-encoder inter-
face. A block diagram of the corresponding circuit is
shown in Fig. 3. The encoder forward motion pulse
presets a down counter to a value corresponding to
the desired exposure time. This pulse also activates
the pixel reset function on the camera, which clears
any accumulated charge in the photosites. Thus the
exposure time begins at this point. When the down
counter reaches zero, the line transfer in the camera
is activated and a line of image data is clocked out.

The exposure time is fixed as long as the time
between the forward motion pulses is greater than the
time it takes to clock the counter down to zero.

In general, backlighting the fabric has been found
to produce higher-contrast images than those
obtained by frontlighting. In this application, a fluo-
rescent source, equipped with an aperture and driven
by a high-frequency ballast, is used to backlight the
fabric uniformly across its width. While the resolu-
tion of the acquired images in the pick (horizontal)
direction is set by the optics of the camera, the reso-
lution in the warp (vertical) direction is determined
by the camera-encoder interface. The acquisition
software, which initiates the start of an image frame,
is used to specify such parameters as image width
and height, integration time, and clock frequency.

Images that are generated using line-scan cameras
are always degraded by linear artifacts that are ori-
ented in the direction of motion. This degradation is
due to the difference in responses of the individual
sensor photosites. These artifacts are highly visible
and can adversely affect the performance of the ensu-
ing image analysis algorithms. A similar problem
can occur with illumination and optics, where persis-
tent nonuniformities give rise to noticeable artifacts
in the generated images. To eliminate these effects,

Fig. 2. Loom motion as measured by the encoder.
The forward, backward, and even zero displace-
ments of the fabric are all evident in this irregular
yet cyclical pattern.
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the preprocessing algorithm corrects for pixel and
illumination nonuniformity. During setup, a white
reference is obtained by first acquiring a large num-
ber of image lines (over 100) from the fluorescent
source and with the fabric removed. Then these lines
are averaged across their pixels to greatly reduce the
noise that is due to the sensor and camera electronics.
Finally, the inverse of each averaged pixel is calcu-
lated and the entire line is normalized to a maximum
value of one. The resulting white reference is then
used to correct for pixel and illumination nonunifor-
mities by multiplying its values by the corresponding
pixels of the acquired image lines.

The acquired image frame serves as an input to the
image analysis or, more specifically, to the defect
segmentation algorithm, which is also executed on
the DSP board. To maintain full coverage of the fab-
ric, the acquisition subsystem begins capturing the
next frame while the current frame is analyzed for
defects. The following section presents a detailed
description of the defect segmentation algorithm.

III. DEFECT SEGMENTATION ALGORITHM

In designing the defect segmentation algorithm for
our inspection system, we observed that the images
of fabrics constitute ordered textures that are globally
homogenous; that is, statistics measured from differ-
ent patches in an image are correlated. It was further
noted that images containing defects are less homog-
enous that those that are defect-free. Therefore, the
essence of the presented segmentation algorithm is to
localize those events (i.e., defects) in the image that

disrupt the global homogeneity of the background
texture. We shall now describe the algorithmic mod-
ules (see Fig. 4) that are designed to accomplish this
very goal under the conditions that

1. defects exhibit low-intensity variation within
their boundary, and

2. relative to the textured background, they consti-
tute a small portion of the field of view.

In the following sections, the modules are
described in detail and their efficacy is clearly dem-
onstrated using the images captured by the image
acquisition subsystem.

A. Wavelet Transform Module

The wavelet transform module in the proposed
segmentation algorithm constitutes a preprocessing
step with the objectives of attenuating the back-
ground texture and accentuating the defects.

The term “wavelet transform” in fact refers to a
specific class of the 2-D discrete wavelet transform
called the multiscale wavelet representation
(MSWAR) [13]. The notable advantages of MSWAR
over the standard discrete wavelet transform, popu-
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Line of
Image Data

Fig. 4. Flowchart of the presented defect segmenta-
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larized by Mallet [14], are its shift invariance and the
fact that in MSWAR, the transformed signals (or
images) remain at full resolution with every iteration.
These properties are especially important in anomaly
detection and classification, because loss of resolu-
tion compromises the accuracy with which these
tasks can be accomplished.

The MSWAR of a digital image ,
, with  levels of scale reduc-

tion is a set of  images. These are the detail
images at all levels of scale reduction; that is, for

,

•  (contains no vertical edges),

•  (contains no horizontal edges),

•  (contains no horizontal or vertical
edges),

plus the blurred version of  at the lowest
scale level, . An efficient algorithm for the
generation of these images has been devised [13] and
is given for easy reference.

1. Given a low-pass and a high-pass filter, and
assuming that these filters are represented as
column vectors  and , respectively, gen-
erate four 2-D kernels as follows:

2. For ,

3. For ,

4. For ,

5. Allocate  row pointers, , and
 column pointers , where

indicates the support of the selected filters.

6. Initialize the pointers as follows:

7. Convolve the generated kernels with the ele-
ments of the signal , where ,
as addressed by the pointers. The results are the

 elements of the four output signals
, respectively.

8. Next .

9. Next .

10. Next .

An example of the application of this algorithm
for the generation of MSWAR of a fabric image is
shown in Fig. 5. Note that the objectives of texture
attenuation and defect accentuation are clearly met in
the top right-hand detail image in Fig. 5(c). The
choice of the low-pass and high-pass filters is appli-
cation-dependent. Thus far in this work, we have
used Daubechies’ D2 filter [15] because it is effort-
less and efficient to implement and, more impor-
tantly because the structure of its corresponding 2-D
kernels matches the plain weave pattern of the fab-
rics under consideration. As reported in [12], other
filters can also be derived in an optimal fashion to
match the background textures of fabrics with other
weave patterns.

 Recall that the objectives of employing the
MSWAR are to attenuate (in a scale-dependent fash-
ion) the background texture and to accentuate the
defects. The question is at what scale level and for
which detail image these objectives are met. In other
words, in Fig. 5, how can the image representing

, which seems to depict the defect clearly, be
selected automatically for further processing? The
appropriate choice of  is strongly dependent on the
choice of the filters for MSWAR, as well as the reso-
lution (i.e., number of pixels per unit area) of the
captured images. Using this information, which is
always available a priori, one should choose that
value of  for which the greatest amount of back-
ground attenuation is achieved. Of course, care must
be taken so that the defects remain intact during this
smoothing process. Thus far, we have chosen to
select an appropriate value for  manually by
observing the output of MSWAR for a handful of
fabric images.

Unlike the choice of , the choice of the appro-
priate detail image depends on information that is
seldom, if ever, available a priori (e.g., defect orien-
tation). This is the reason for the use of the edge
(detail image) fusion module, which is described in
the following section.

B. Edge Fusion and Signal Conditioning

The main function of the edge fusion module is to
complete the task that was initiated by MSWAR, that
is, background attenuation and defect accentuation.
Accordingly, this module is to produce an output,
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, in which for a preselected , the pixels in
the detail images that correspond to the defects are
fully preserved. Although there are different
approaches by which this task can be accomplished,
we have chosen to use the following fusion scheme:

where multiplication is meant to be pixel-by-pixel
and

for . Note that  and that it is
computed for a preselected value of . To better
understand the behavior of this fusion scheme, it is
useful to examine it in a simpler form. This form,
which is obtained by setting  in Eq. 1, is
known as Bernoulli’s rule of combination and is
often used in image fusion [16]. It is observed that in
this form, for , the mapping from
to  is linear with  and

 (see Fig. 6). Note that the
fused output tends to follow one of the inputs closely,
if the other input possesses low values. On the other
hand, the input with very high values tends to domi-
nate the output, regardless of the value of the other
input. This is precisely what is needed in our applica-
tion, because in the detail images, defects -- inter-
preted as discontinuities in the textured background--
show up as pixels with high values.

An important issue that must be taken into
account is that high values in the detail images repre-
sent not only the defects, but also the background
texture. Therefore, unconstrained inclusion of all
pixels (from all three detail images) in the fusion pro-
cess will not, in most cases, result in background
attenuation. To address this issue, we have con-
strained the fusion process as follows. Because the
input image is assumed to be dominated by the back-
ground texture (rather than the defect), the energy
(sum of squared values) for each of the detail images
is computed and monitored. If, for a preselected ,
one of the three detail images has an energy value
that is disproportionately larger than the others [see

 in Fig. 5(b)], but approximately equal to that of
its counterpart, then that detail image is excluded
from the fusion process. By its counterpart, we are
referring to the corresponding detail image that has
been computed from a reference image, that is, an
image of the same fabric as the input image, but with
no defects.

The next step in the presented defect segmentation
algorithm is that of signal conditioning. The objec-
tive here is to make the defect pixels in the fused out-
put more homogeneous. This objective is
accomplished by the standard technique of histogram
equalization [17], which, by increasing the global
contrast of the image, compresses the dynamic range
of the defect pixels. The importance of this step in
the segmentation algorithm will become more appar-
ent in the next section. An example of the application
of these two modules to fabric images is presented at

o x y,( ) M

o x y,( ) f 1 f 2 f 3+ +{ }
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Fig. 5. (a) An image of a fabric with a pick defect (i.e., the dark, horizontal streak). (b), (c), (d) MSWAR of the
image in (a) for , respectively. Starting with the top, left-hand corner and moving clockwise, the out-
put images in (b), (c), and (d) correspond to .
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the end of the following section.

C. Global Homogeneity Module

As mentioned, in the proposed segmentation algo-
rithm, defect segmentation is achieved by determin-
ing those events that disrupt the global homogeneity
of the background texture. The local roughness and
global homogeneity module constitutes the essence
of the proposed approach.

Fractal-based measurements, such as the fractal
dimension and the correlation dimension, have been
utilized extensively for quantifying surface charac-
teristics (e.g., surface roughness) of image textures.
The proposed techniques for estimating the fractal
dimension, however, are unreliable for localized
measurements because they require adequately large
data sets. In this work, two measurements, based on
the correlation dimension, are used [18]. The first of
these is a local measurement that quantifies the sur-
face roughness; the second gives a measure of the
surface homogeneity in a global sense.

Let a gray-level image, , be represented by
a point in three-dimensional space as

, . The correlation
dimension [19] is defined as
where  denotes scale. The correlation sum, ,
is given as
where  denotes the unit step function and

 is the distance between vectors  and .
Generally, the correlation dimension is estimated as
the slope of the line that is fitted to the data points

. In this work, however, two
measurements that are derived directly from the cor-
relation sum are used.

The first of these reflects the local roughness of
the input image surface and is given as

where  is the upper limit for , and  is
the correlation sum computed within nonoverlapping
subregions of the input image. The second measure-
ment quantifies global image homogeneity and is
computed as

where

and  is the total number of subregions into which
the image is divided. Given these expressions, the
following statements can be made. High values of

 signify high correlation among the pixel
values in the subregion (indicating a smooth surface),
while low values of  indicate a rough sur-
face. Furthermore, small values of  (i.e., surface is
either mainly rough or mainly smooth) denote a glo-
bally homogeneous image.

By applying the local roughness and global homo-
geneity measures to the output of MSWAR (specifi-
cally, the fused detail images), one can robustly
detect and localize anomalies in the presence of tex-
ture. To illustrate this point, consider the images in
Fig. 7. The input images in Figs. 7(a) and 7(b) are of
the same fabric, but the latter image contains a pick

f1
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Fig. 6. Output of the fusion scheme when one of the
two inputs is kept constant.
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defect (i.e., the dark, horizontal streak). The fused
detail images are shown in Figs. 7(c) and 7(d),
respectively. Comparing this pair of images with the
input pair demonstrates the utility of the previously
described preprocessing modules, that is, scale-
dependent attenuation of the background texture and
accentuation of the defect. Figures 7(e) and 7(f)
depict the conditioned outputs, and the images in
Figs. 7(g) and 7(h) represent  for each of the
inputs. Note that on the one hand, the local rough-
ness measure for the fabric with no defects exhibits a
random pattern [Fig. 7(g)], while on the other hand,
the same measure localizes the defect as an event
with highly correlated pixels [Fig. 7(h)]. Further-
more, a comparison of the global homogeneity mea-
sures for the two fabrics (i.e., =58.1 for the fabric
with the defect versus =1.1 for the one without)
gives a clear indication of the presence of the defect.
The significant, often an order of magnitude, differ-
ence between the values of  indicates that a thresh-
old, , can be established to robustly detect the
presence or absence of defects. This threshold value
is selected empirically by observing typical values of

 for defect-free fabrics.

D. Thresholding and Blob Analysis

If the computed global homogeneity measure hap-
pens to fall below , the input image is deemed to be
defect-free, and the defect segmentation scheme
begins to analyze the next acquired image frame. If,
however, one or more defects are detected (i.e.,

), the corresponding  is binarized by
employing an automatic thresholding technique. The
choice of a thresholding technique is not at all cru-
cial, because large ’s indicate not only the presence
of defects, but also the fact that the values corre-
sponding to defects are vastly different from those
corresponding to background. So far in this work, we
have employed Otsu’s approach [20], which aims to
minimize the weighted sum of group variances.
Although this approach has produced favorable
results, we recommend that other techniques be
explored in which the discrepancy between the num-
ber of defect pixels and the number of background
pixels is taken into account, for example, [21].

Following the binarization of , the output
image undergoes blob (connected component) analy-
sis. For this, we have used one of the many widely

available blob analysis techniques, specifically, the
two-pass technique presented in [17]. Once the blob
analysis step is complete, the segmented defects can
be categorized into a number of meaningful classes
based on a few extracted features or attributes, such
as size, orientation, and intensity profile.

IV. RESULTS

The performance of a prototype of the described
inspection system was evaluated in two stages using
a production-grade loom. In the first stage, the loom
was set up to produce sheeting fabric using filament
yarn with a plain weave pattern and pick and warp
densities of 58 yarns/in. In the second stage of test-
ing, the same construction was used, but this time
with spun yarn. The prototype system was set up to
cover a 20-in.-wide area of the fabric, with the under-
standing that, because of its scalability, one only
needed to duplicate the system hardware to cover the
full width of the loom. The loom was operated at the
speed of 12 in./min as an operator introduced defects
into the weaving process. The 17 defect types for the
filament-yarn fabric and the 26 defect types for the
spun-yarn fabric included almost all of the most
commonly occurring weaving defects, such as
mispicks, end-out, waste, kinky filling, oil, start
mark, reed mark, mixed filling, moiré, dirty yarn,
misreed, and hanging end.

The image acquisition subsystem consistently
produced high-quality images of the fabric for both
yarn types. Both the pick- and warp-direction image
resolutions were set at 100 pixels/in. for the filament
yarn and 200 pixels/in. for the spun yarn. The higher
resolution in the latter case was necessary because
the impurities that are naturally present in spun-yarn
fabric tend to obscure the more subtle defects. The
fixed exposure time of the line-scan camera was set
at 2 msec. Note that with a nominal loom speed of 12
in./min and a maximum resolution of 200 lines/in.,
this exposure time is less than the shortest time
between forward motion pulses (i.e., 25 msec) and
therefore is sufficient to freeze the motion of the fab-
ric. The performance of the image acquisition sub-
system was evaluated as three observers determined
whether or not the introduced defects were visually
apparent in the captured images. Their judgement
was that 91% of the defects in the filament-yarn fab-
ric and 90% of the defects in the spun-yarn fabric
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were “seen” by the prototype system.
The segmentation algorithm was invoked once a

 image frame was collected in the mem-
ory of the DSP board. To account for illumination
nonuniformities, however, each frame was divided
into sixteen  subimages before analysis.
During the analysis of these subimages, the acquisi-
tion subsystem was directed to capture the next

 image frame so that 100% coverage of
the fabric was maintained. The free parameters for
the segmentation algorithm were set as follows. The
level of scale reduction, , was set to 2 and 3 for the
filament- and the spun-yarn fabrics, respectively.
This setting was prompted by the fact that the images
in these cases, were captured at two different resolu-
tions (i.e., 100 and 200 pixels/in.). The image subre-
gion size for computing the local roughness was
chosen to be 16, because defects less than 0.25 in.
(i.e., 25 pixels) were deemed unimportant. Other
parameters, such as  and the energy threshold for
the constrained fusion process, were determined
empirically.

In analyzing more than 3700 subimages for both
fabric types, the overall detection rate of the pre-

sented approach was found to be 89% with a local-
ization accuracy of 0.2 in. and a false alarm rate of
2.5%. The false alarm rate was computed as the total
number of false detections divided by the total num-
ber of processed images. Note that the detection rate
of 89% represents an average over all defect types. In
general, because we are dealing with an edge-based
segmentation approach, defects that produce very
subtle intensity transitions (e.g., mixed filling, and
moiré) were detected at a lower rate (i.e., 50-60%).
On the other hand, for the most commonly occurring
and the most serious defects, such as mispicks, end-
outs, and slubs, the detection rate was 100% (see Fig.
8 for examples).

V. CONCLUSIONS

We have described a vision-based fabric inspec-
tion system that accomplishes on-loom inspection of
the fabric with 100% coverage. The inspection sys-
tem is scalable and can be manufactured at relatively
low cost using off-the-shelf components. This system
differs from those reported in the literature in two
crucial ways. First, it is on-loom; and second, it is

(a) (c) (e)

(h)(f)(b)

(g)

(d)

Fig. 7. (a), (b) Images of fabric without and with a defect, respectively. (c)-(h) Outputs of the various modules in
the segmentation algorithm. See text for details.
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equipped with a novel defect segmentation tech-
nique, which was thoroughly tested under realistic
conditions and was found to have a high detection
rate and accuracy and a low rate of false alarms. The
fabric inspection system was described in terms of its
image acquisition subsystem and its defect segmen-
tation algorithm. The image acquisition subsystem is
used to capture high-resolution, vibration-free
images of the fabric under construction. The essence
of the presented segmentation algorithm is the local-
ization of those defects in the input images that dis-
rupt the global homogeneity of the background
texture. To accomplish this, a wavelet-based prepro-

cessing module, followed by an image fusion
scheme, are employed to attenuate the background
texture and accentuate the defects. Novel texture fea-
tures are utilized to measure the global homogeneity
of the output images. A prototype system was used to
acquire and to analyze more than 3700 images of
fabrics that were constructed with two different types
of yarn. In each case, the performance of the system
was evaluated as an operator introduced defects from
26 categories into the weaving process. The overall
detection rate of the presented approach was found to
be 89% with a localization accuracy of 0.2 in. and a
false alarm rate of 2.5%.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Fig. 8. (a), (b), (c) Fabric images with mispick, end-out, and slub (or waste) defects, respectively; with the corre-
sponding fused outputs in (d), (e), and (f); ’s in (g), (h), and (i); and the thresholded results in (j), (k),
and (l).
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