
Abstract

A statistical-based deformable model is being developed
that improves upon existing point distribution models
(PDMs). Existing PDM boundary finding techniques often
suffer from the following shortcomings: (1) a priori local
shape characteristics are not utilized, (2) global shape and
gray-level information are treated independently during
boundary optimization, and (3) there is no existing metric
that provides a confidence measure of segmentation perfor-
mance. A new deformable model algorithm is under develop-
ment in which the objective function used during
optimization of the boundary encompasses several important
characteristics. First the objective function includes both
global shape and local gray-level characteristics, so optimi-
zation occurs with respect to both pieces of information
simultaneously. In addition, local shape characteristics, as
derived from the training set, are also incorporated into the
boundary finding process. Finally, the objective function is
formulated in a way that leads to a confidence metric that
indicates how well the final boundary fits the underlying
object as defined in the target image. This new algorithm is
being applied to geometric test images as well as high-reso-
lution x-ray computed tomography (CT) images of labora-
tory mice for the purpose of organ identification.

1. Introduction

A new statistical-based deformable model algorithm for
image analysis is being developed. The motivation for this
work is the need for an algorithm to perform automatic seg-
mentation and recognition of semi-rigid objects with faint,
missing, or obstructed edges within a complex background.
Semi-rigid objects are those that demonstrate controlled
shape variability over multiple instances of that object. An
example of this type of application presented in this paper is
the segmentation/recognition of organs (skull, heart, lung,
and kidneys) within medical imagery (x-ray CT cross-sec-
tions of mice). After substantial investigation of a variety of
segmentation algorithms, a statistical-based deformable

model, the active shape model (ASM) developed by Cootes,
et al. [1], was chosen as an appropriate starting point because
of its ability to incorporate a priori information extracted
from a training set to build a gray-level model (GLM) and a
shape model (SM). These models are used during an itera-
tive contour deformation process that adjusts the position
and shape of the contour to match the boundary of the object
within the image. Although ASM is an excellent starting
point for the motivating application, it has shortcomings in a
few key areas: (1) a priori local shape characteristics are not
utilized, (2) global shape and gray-level information are
treated independently during optimization of the boundary
position, and (3) there is no existing metric that provides a
confidence measure of segmentation performance. These
shortcomings limit ASM’s robustness and accuracy in some
applications, such as the medical image analysis application
introduced later in this paper. The new algorithm being
developed will address each these shortcomings, and, hence,
will be a more effective statistical-based deformable model
algorithm.

A few researchers have recently developed new statisti-
cal-based deformable models based on ASM. Wang, et al.
[2] have developed a probabilistic based optimization
scheme that uses Cootes’ PDM and integrates Canny-edge
information into the maximum a posteriori (MAP) objective
function as the underlying image attraction force. Kervrann,
et al. [3] have developed similar probabilistic techniques, but
include Markov modeling on the local scale to promote
boundary smoothness. Both of these ASM adaptations rely
on edge information in the target image as the external
attraction force, rather than the gray-level gradients pro-
posed by Cootes. Duta, et al. [4] have also refined the ASM
technique in terms of the image attraction force as well as the
optimization approach to fit the boundary to the underlying
image data. Consideration of boundary-point outliers is an
important consideration in their work. Even with the consid-
erable research that has been performed, none of the result-
ing approaches address the three shortcomings of existing
PDMs outlined previously.
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2. Improved Statistical Shape Model

The following formulation is similar to that presented in
[1]. Let the manually selected boundary, or shape, for the ith

image in an M-image training set be represented by a collec-
tion of aligned landmark points (LPs), L(i) as in eqn. (1). 

(1)

where the N LPs are defined by the coordinate pairs

. (2)

Once selected by the user, the alignment of the L(i)s to a
common coordinate frame is done via Procrustes analysis
[7]. Note that a boundary, L(i), may be composed of any
number of open and/or closed boundaries. This is an often
overlooked, but extremely useful characteristic of this
boundary modeling technique that allows great flexibility for
the user during training, yet does not complicate the bound-
ary optimization process.

Using this training data set of aligned L(i)s, we can cre-
ate a global shape model (GSM) by using principal compo-
nent analysis (PCA) to formulate an expression that
represents a new shape, L, as

, (3)

where L is the mean of the L(i), Φ  is a matrix whose columns
are the eigenvectors (φk for all k=1...ts) corresponding to the
ts largest eigenvalues (λk, for all k=1...ts) of the covariance
matrix for the collection of L(i), i=1...M. The value of ts is
typically chosen to capture ~98% of the total variation in the
training set. The elements of b govern the amount of shape
variation from the mean, L, along each eigenvector. Alterna-
tively, given a shape, L, one can transform that shape into the
PCA sub-space using the equation

. (4)

Also, as part of the training process, gray-level profiles,
g(i)(j), (i=1...M, j=1...N) are extracted from each of the M
training images along lines through each of the N LPs, nor-
mal to the boundary. These profiles can be expressed as

(5)

where Ii is the ith image in the training set, Ng is the number
of gray-level samples in each profile, and αj(i) is the angle of
the profile through the jth LP normal to the boundary. A
improvement in numerical stability was made to the pub-
lished ASM gray-level modeling approach [1] in that a new
gray-level model (GLM) is formulated by performing PCA
on each set of gray-level training profiles for a given LP.
Similar to eqn. (3), we can represent a new gray-level pro-
file, g(j), through the jth LP as

(6)

where g(j) is the mean of the M training profiles through the
jth LP, Ψ (j) is a matrix whose columns are the eigenvectors
(ψ (j)k for all k=1...tg(j)) corresponding to the tg(j) largest
eigenvalues (  for all k=1...tg(j)) of the covariance matrix
for the collection of g(i)(j), i=1...M. This covariance matrix,
which was used directly in the original ASM formulation
[1], was nearly singular for several image training sets used
during the initial testing. This singularity prompted the
development of the PCA approach for the GLM. The ele-
ments of d(j) govern the amount of variation from the mean
gray-level profile, g(j), along each eigenvector. Similar to
the GSM, given a gray-level profile, g(j), one can transform
that profile into the PCA sub-space using the equation

. (7)

Some additional improvements were made to the ASM
approach including:

1. incorporation of resolution dependence into the GSM 
and

2. an improved GLM that includes both gradient and abso-
lute intensity terms.

For more technical detail about these improvements see [5].
Using the described GSM and GLM formulations and the
optimization approach outlined in [1], several segmentation
experiments were carried out. Two successful segmentation
results on x-ray CT cross sections of laboratory mice are
shown in Fig. 1 and Fig. 2. The images were acquired using
a micro CT system developed at Oak Ridge National Labo-
ratory [6].

Although good results were achieved on some of the test
cases, this improved statistical shape model still suffers from
the key shortcomings previously mentioned: there is no con-

L i( ) x1 i( ) x2 i( ) … xN i( ) y1 i( ) y2 i( ) … yN i( ), ,,,, ,,[ ]'
i∀

;
1 … M, ,

=
=

x j i( )yj i( ){ , } j∀; 1 … N, ,=

L L Φ b+ L φ1 … φts

b1

…
bts

+= =

b Φ ' L L–( )=

g i( ) j( )k Ii x j i( )
Ng 1–( )

2
-------------------- k 1+– 

  α j i( )

yj i( )
Ng 1–( )

2
-------------------- k 1+– 

  α jsin i( )–

,cos–





 k∀; 1 … Ng, ,

=

=

g j( ) g j( ) Ψ j( )d j( )+

g j( ) ψ j( )1 … ψ j( )tg j( )

d j( )1

…
d j( )tg j( )

+

=

=

λgk

d j( ) Ψ ' j( ) g j( ) g j( )–( )=



(a)

(b)

(c)

Figure 1. Skull-ear canal segmentation result using improved
ASM algorithm. (a) shows the original image, (b) shows the
initial shape model position, and (c) shows the final result after
fitting the model to the image data.

(a)

(b)

(c)

Figure 2. Heart-lung segmentation result using improved ASM
algorithm. (a) shows the original image, (b) shows the initial
shape model position, and (c) shows the final result after fit-
ting the model to the image data.



sideration of local shape features, the GSM and GLM are
optimized independently, and there is no confidence metric
generated that estimates the goodness of boundary fit to the
image data.

3. Local Shape Modeling

In published descriptions of the ASM training proce-
dure, authors commonly describe the LP labelling process in
two steps. First, “critical” LPs are placed on key features of
the object such as corners, high curvature features, etc. Sec-
ond, additional “interpolation” LPs are distributed along the
boundary between the critical LPs. Although this distinction
is made between the two type of LPs during manual bound-
ary placement, both sets of LPs are treated identically
throughout the remainder of the training and optimization
processes. Hence, the important local shape information the
user is attempting to preserve around the critical LPs is de-
emphasized when all LPs (both critical and interpolated) are
lumped into a single global model of shape, the GSM.

We propose the introduction of local shape models
(LSMs) that preserve the local shape information around
each user-defined critical LP. This formulation is similar to
the GSM formulation in that a subset of local-shape LPs,
l(i)(j), is identified in the neighborhood of each critical LP
during training, where

, (8)

and Nc is the number of user-defined critical LPs. Before
generating the LSM, these subsets of points must be aligned
to a common coordinate frame. We will call the aligned set
of LPs  where

, (9)

h(j) defines the index of the first local-shape LP in the
boundary, L(i), belonging to the jth local shape, and Nl is the
number of LPs in each local shape. Similar to the GSM and
GLM, we can represent a new set of local-shape LPs, ,
using the expression

(10)

where  is the mean of all the aligned local-shape LP sub-
sets, , for the jth critical LP. The columns of the matrix
Ω(j) are the eigenvectors (ω(j)k for all k=1...tl(j)) corre-
sponding to the tl(j) largest eigenvalues (  for all k=1...
tg(j)) of the covariance matrix for the collection of ,
j=1,...M. The elements of c(j) govern the amount of shape
variation from the mean, , along each eigenvector. Once
again, similar to the GSM and GLM, given a set of local-
shape LPs, , one can transform that shape into the PCA
sub-space using the equation

. (11)

The incorporation of these LSMs into a new optimization
scheme that fits a boundary to the image data is described
next.

4. Objective Function Formulation

As mentioned previously, the original ASM boundary
fitting scheme optimizes the GSM and GLM independently.
This leads to problems in that the optimal boundary selection
will be biased towards either the GSM or the GLM instead of
considering both equally. Consider the plot of a GLM objec-
tive function in Fig. 3. Note that there are two local minima

that result in similar values of the objective function, so that
both indicate LP positions that are a good fit to the GLM.
One of the local minima will generate a boundary that fits
the GSM very well (the one on the right), while the other
local minimum (the absolute minimum) creates a boundary
that does not fit the GSM. Because the GLM objective func-
tion is considered independently from the GSM, the absolute
minimum is selected, leading to the segmentation result in
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Figure 3. Plot of the value of the GLM objective function (y-
axis) versus relative pixel position of an LP (x-axis) for a
given test image.



Fig. 4(a). If, on the other hand, the local minimum is manu-
ally selected to best satisfy both the GLM and GSM, the seg-
mentation result in Fig. 4(b) is achieved. In addition, recall
that a third component, the LSM, needs to be added to the
optimization scheme. A single objective function is needed
that encompasses the a priori information captured by the
GSM, GLM, and LSM, and allows the generation of a confi-
dence metric. This objective function is developed next.

Similar to that presented in [2], a shape parameter vec-
tor, v, is formed that combines both PCA shape information
as well as boundary pose data as

, (12)

where

, (13)

s is scale, θ is rotation, and Tx, Ty are the x- and y-transla-
tions of the boundary. Now, using Bayes rule, we can write
the maximum a posteriori (MAP) probability of a shape
parameter vector, v, given an image, I, as

. (14)

We can express the prior shape probability, Pr(v), as an inde-
pendent combination of the global and local shape probabili-
ties

. (15)

Assuming a multivariate Gaussian distribution for the GSM
parameters, vi, i=1...ts, we can write

. (16)

Similarly, assuming independence of LSMs and a Gaussian
distribution for each LSM, we can write

(17)

where c(i) has been re-written as c(v,i) to indicate that it is a
function of the shape parameter vector (boundary), v.

We now have completely specified our shape prior (glo-
bal and local), Pr(v), so we turn our attention to the likeli-
hood term, Pr(I|v). This term expresses the probability of
extracting a set of gray-level profiles from the image, I,
given a shape parameter vector, v. Assuming independence
of the profile-based GLMs for each LP, we can write

. (18)

where g(i) has been re-written as g(v,i) to indicate that it is a
function of the shape parameter vector, v. Once again we
assume (as in [1]) that the gray-level profiles for the ith LP

(a)

(b)
Figure 4. Kidney and spine segmentation via (a) independent
optimization of the GLM and SM and (b) simultaneous optimi-
zation of both the GLM and SM. Note the incorrect segmenta-
tion of the left kidney in (a).
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can be modeled by a multivariate Gaussian distribution, and
write

(19)

where

, (20)

σg(i) is the variance of the residual, and the diagonal matrix,
Λ(i), has diagonal elements

. (21)

We now have expressions for all probability terms in
our Bayesian formulation given by eqn. (14). To form the
objective function, J(v), we take the log as follows

. (22)

By simplifying and removing all terms that are independent
of v, we are left with three terms: J1, J2, and J3 that satisfy

(23)

where

, (24)

, and (25)

. (26)

As designed, J has one term for each of the trained models:
GSM (J1), LSM (J2), and GLM (J3). 

5. Preliminary Results

The gradient of J was calculated analytically and a gra-
dient descent program was written to minimize J with
respect to the shape parameter vector, v. At this point some

very simple geometric shapes have been tested to help debug
the implementation, validate the approach, and investigate
the behavior of J. These results are shown in Fig. 5.

6. Conclusions and Future Work

A theoretical formulation for a new statistical shape
model has been presented that has several improvements
over similar techniques. Most notable are (1) the incorpora-
tion of a mechanism to model local shape characteristics, (2)
the formulation of an objective function that allows simulta-
neous optimization of the GSM, LSM, GLM, and (3) the
probabilistic nature of the objective function which lends
itself well to the generation of a segmentation confidence
metric.
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Figure 5. Preliminary segmentation results using the new
shape model optimization approach.



Clearly there is work to be done to validate this new
objective function on more complex image data. Further-
more, a clearer understanding of the behavior of the objec-
tive function, J, (e.g. presence of local minima) is needed to
predict the applicability of this approach to a variety of
image types. Also, the exact formulation of the segmentation
confidence metric must be determined. Finally, a direct com-
parison of the presented approach to existing techniques in
terms of segmentation accuracy, speed, robustness, etc., is
needed.
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