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Abstract. Intraoperative optical imaging of exposed organs in visible, near-
infrared, and infrared (IR) wavelengths in the body has the potential to be use-
ful for real-time assessment of organ viability and image guidance during sur-
gical intervention. However, the motion of the internal organs presents signifi-
cant challenges for fast analysis of recorded 2D video sequences. The move-
ment observed during surgery, due to respiration, cardiac motion, blood flow, 
and mechanical shift accompanying the surgical intervention, causes organ re-
flection in the image sequence, making optical measurements for further analy-
sis challenging. Correcting alignment is difficult in that the motion is not uni-
form over the image. This paper describes a Canny edge-based method for 
segmentation of the specific organ or region under study, along with a moment-
based registration method for the segmented region. Experimental results are 
provided for a set of intraoperative IR image sequences. 

1 Introduction 

Intraoperative optical images of exposed organs in visible, near-infrared, and infrared 
(IR) wavelengths in the body have the potential to be useful for real-time, non-
invasive assessment of organ viability and image guidance during surgical interven-
tion.  Relatively low cost, non-invasiveness and good specificity for physiological 
changes make optical imaging desirable for a variety of surgical procedures [1-4].  
However, the motion of the internal organs presents significant challenge for real-
time data analysis of recorded two-dimensional video sequences.   
 
The movement of the kidney, liver, urethra, etc. observed during surgery due to respi-
ration, cardiac motion, and blood flow, can be between 15 and 20 mm.  In addition to 
mechanical shift of the tissue from the surgical intervention, all of these cause organ 
reflection in the image sequence, making optical measurements for further analysis 
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challenging. Correcting alignment is difficult in that the motion is not uniform over 
the image.  Also, other artifacts, such as glare caused by illumination from surgical 
lights reflecting off of wet tissue surfaces (in the case of visible wavelength imaging) 
and evaporative cooling (in IR imaging), add random noise to the imagery, do not 
allow clear visualization of internal fiducial markers, and, therefore, make the task 
more difficult.   

 
This paper describes a Canny edge-based method for segmentation of the specific 
organ or region under study, along with a shape moment-based registration method 
for the segmented region.  Experimental results are provided for a set of intraopera-
tive IR image sequences of the kidney.  All organs generally exhibit 3D motions, in 
addition to having 3D volumes.  Moreover, these organs and tissues are surrounded 
by deformable surfaces.  While medical image registration has been well-researched 
[5-12], the registration to two-dimensional IR surgical image sequences to non-rigid 
3D structures has not been extensively studied. 

2 Image Registration Method 

Image registration for an IR video is accomplished in two stages.  The organ or re-
gion of interest is first automatically segmented throughout the video sequence.  This 
process is accomplished by a combination of edge extraction and morphological op-
erations that form a closed boundary of the organ.  Then a shape-based registration 
algorithm is applied to the segmented organ to estimate the alignment error relative to 
a base image in the image sequence.  These steps are detailed below. 

2.1 Image Sequence Collection 

IR imaging sequences of porcine kidney were collected to evaluate renal ischemia, 
particularly focal perfusion deficits.  Laparotomy with renal mobilization, hilar dis-
section, and identification of segmental branches were performed in six porcine mod-
els.  An IR camera (3-5 µ wavelengths) was directed at two exposed kidneys from 30 
cm distance.  Images (320x256x14 bits) were collected at the rate of one per second 
with 300-600 images per sequence. 
 
These image sequences have been used for development and testing of the registra-
tion method.  Figure 1(a) shows a baseline IR image of a pig kidney collected during 
this evaluation. An outline of the kidney edge generated by the segmentation method 
is also shown in Figure 1(b).  At this boundary, the contrast with the surrounding 
tissue varies from good to just visible. 



 

Figure 1. IR image of pig kidney from video sequence shows varying contrast at kidney 
boundary.  (a) shows original image while (b) shows an overlay of the kidney contour 

(a) (b) 

As a preprocessing step, 2D median filtering is applied to remove fixed pattern noise 
present after calibration of the IR images.  The improved result is shown below in 
Figure 2. 

 

Figure 2.  2D median filtering with a 3 by 3 window is applied to each input image to reduce 
fixed pattern noise as shown in the image insets 

2.2 Organ Segmentation 

In the acquired video, the kidney is moving in the foreground with the pig’s other 
body organs in the background. The image content at the boundary of the kidney is 
changing slightly since the kidney is not fixed to the background at its edges. There-
fore to achieve good video registration it is necessary to segment the organ from the 
background and consider it independently.  
 



In much of the imagery, the overall contrast between the kidney and the overall back-
ground is useful. With this in mind, we can achieve segmentation using a Canny [13] 
edge finder followed by some morphological operations.  Figure 3(a) shows the result 
following the Canny edge detection.  
 
From the Canny edge detection, a binary image is obtained, in which edge pixels 
have the value 1, and other pixels are 0. This image is the input of morphological 
operations performed to acquire the kidney as an object. The first operation is bridg-
ing which joins pixels of value 1 that are separated by only one zero pixel. This fills 
gaps in the kidney contour. In some cases, it was necessary to dilate the edge image 
before bridging to allow bigger gaps to be filled. In these cases the edge was thinned 
afterward [14].  
 
After bridging, an image fill operation is performed that starts at the center of the 
kidney and inserts values of 1 until stopped by a continuous boundary of 1s. If the 
kidney boundary was extracted without gaps, then this operation creates a binary 
object describing the kidney. If there are gaps in the boundary, then the fill operation 
will fill a much greater area than the size of the kidney and will likely fill the entire 
image. This case is easily detected, leading us to use the kidney object obtained from 
the previous frame. However, if good contrast is available, the above procedure ob-
tains the boundary with a high success rate.  
 
After the image fill, binary connectivity analysis is performed so that the kidney can 
be identified as an object. An operation is then performed to fill any holes in this 
object, so that the kidney is completely covered. Additional morphological operations 
such as opening (erosion followed by dilation) are necessary to remove small ap-
pendages of the kidney that occur from background edges that are adjacent to the 
kidney. The result is a single object that only describes the kidney shape and location, 
as shown in Figure 3(b). 
 

     
(a) (b) 

Figure 3.  Canny edge (a) and segmented kidney (b) image   



2.3 Registration 

In the video that we have observed, the kidney is well-approximated as a rigid body. 
During the organ’s movements, the background changes, and the kidney’s location 
and rotation in the background changes, but the kidney’s shape does not change sig-
nificantly. Therefore, it’s possible to perform registration using the object location 
and orientation that was extracted as described above. We have experimented with 
the use of tracking intensity textures or landmarks within the kidney region, but we 
have found the most accurate and robust results from tracking the kidney’s contour. 
 
As illustrated in Figure 4, by using first and second-order moments [14] of the ob-
tained binary object, we can describe its location and orientation. The first-order 
moments, or centroid, define the x and y coordinates of the object’s center of mass. 
The second-order central moments can be used to define the object’s axis of maxi-
mum elongation. Here, the shape is modeled as an ellipse, and we find the angle of 
the major axis of an ellipse with the same second-order central moments as the bi-
narized kidney. 
 
The segmented kidney object in the first frame of the image sequence is used as a 
reference. The registration of each following frame is then defined by the translation 
needed to shift the centroid and align the major axis to match the reference. This 
defines a homogenous transform to map intensity values from image points in the 
current frame to the corresponding locations of the reference image. Since subpixel 
locations are needed from the current frame, interpolation is required. We have found 
bi-cubic interpolation to be sufficient. 

 

 
Figure 4.  Illustration of first and second-order moments in the segmented kidney object 



3 Experimental Results 

The registration method described in section 2 has been applied to five sequences of 
intraoperative IR pig kidney images.  The resulting registered image sets have been 
evaluated using both a cross-correlation and a frequency-based measure.  Typical 
results from each of these measures are given below. 

3.1 Cross-correlation registration performance measure 

The normalized cross-correlation value S is provided in Eq. (1), which allows com-
puting pixel-wise cross-correlation coefficients between the pixel intensities of the 
two images, normalized by the square root of their autocorrelations. 
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where I1, I2 are intensities of the two images respectively, C is the mask of the image, 
dx, dy are number of shifting pixels in x and y directions.  The mask is such that the 
cross-correlation is performed only on interior pixels of the kidney. 
 
When S reaches the maximum value, dx = dxmax, dy = dymax. Then D = |dxmax| + |dymax|, is 
defined as the number of shifting pixels.  Ideally, for the two perfect registered im-
ages, D = 0.  The smaller D value is, the less the motion affects the image sequence.  
The D values between each adjacent renal IR images are calculated to test the per-
formance of image registration.   
 
The numbers of shifting pixels (D value) for each image in the sequence before and 
after registration were calculated (see Figure 5).  The mean D values for whole se-
quence are 1.8 for non-registered image sequence vs. 0.7 for registered image se-
quence.  While the actual registration is at a subpixel level, the reduction in integer 
correlation shifts of the kidney interior proves the stabilization in kidney position for 
this sequence. 



 
(a) 

(b) 

Figure 5.  Comparison of number of shifting pixels (D values) between two sequences of 500 
images each: before (a) and after (b) registration 

3.2 Frequency domain registration performance measure 

A frequency domain analysis to measure alignment was performed on an interior 
image region of the kidney.   For this test, a 21 by 21 pixel region was used.  The 
mean value for this region was calculated for each image in the sequence.  Figure 6 
shows the before and after registration for one such typical region over the sequence.  
The time sequence before registration is seen to have higher noise than after registra-
tion. 



 
(a) (b) 

Intensity vs. Time : 21x21 ROI at (250,150)Intensity vs. Time : 21x21 ROI at (250,150)
150150

Figure 6.  Time domain plot of 21 by 21 pixel region mean value for all images in sequence 
before registration (a) and after registration (b).  A significant reduction in noise level can 
be seen after registration 

The discrete Fourier transform (DFT),  forkf 10 −= Nk K , is calculated for the time 
sequence  for , nt 10 −= Nn K
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The frequency domain plot of the DFT gives further insight into the registration ef-
fectiveness.  Figure 7(a) shows a large frequency component located approximately 
0.25 of Nyquist.  This component has a period of 4 seconds where the sampling fre-
quency is 1/sec. and corresponds to the respiration rate.  Figure 7(b) shows that this 
component is reduced to background noise levels after registration.  The registration 
method removed the motion corresponding to the respiration. 
 

 
(a) (b) 

Figure 7.  Discrete Fourier transform of 21 by 21 pixel region mean value as shown in 
Figure 6 before registration (a) and after registration (b).  DFT shows elimination of signifi-
cant frequency band (due to respiration-induced movement) after registration 
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4 Conclusions 

An image sequence registration method has been proposed that provides localized 
registration for specific regions and organs in intraoperative 2D medical image se-
quences.  The IR image sets presented challenges due to thermal noise and low con-
trast.  Successful segmentation of the kidney in these images was achieved using this 
method and good overall registration was applied to these regions.  Performance 
results were presented that demonstrated quantitatively the improvement in the image 
alignment.  This method can be applied not only to IR imagery but to visible optical 
images as well.  Additional work is needed to characterize the thermal noise and to 
reduce the effects on the registration and measured thermal signals.  This method is 
capable of being implemented in real-time using available hardware and software. 
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