
On Asymmetric Classifier Training for
Detector Cascades

Timothy F. Gee

Oak Ridge National Laboratory?

Abstract. This paper examines the Asymmetric AdaBoost algorithm
introduced by Viola and Jones for cascaded face detection. The Viola
and Jones face detector uses cascaded classifiers to successively filter, or
reject, non-faces. In this approach most non-faces are easily rejected by
the earlier classifiers in the cascade, thus reducing the overall number of
computations. This requires earlier cascade classifiers to very seldomly
reject true instances of faces. To reflect this training goal, Viola and
Jones introduce a weighting parameter for AdaBoost iterations and show
it enforces a desirable bound. During their implementation, a modifica-
tion to the proposed weighting was introduced, while enforcing the same
bound. The goal of this paper is to examine their asymmetric weighting
by putting AdaBoost in the form of Additive Regression as was done
by Friedman, Hastie, and Tibshirani. The author believes this helps to
explain the approach and adds another connection between AdaBoost
and Additive Regression.

1 Introduction

The Viola and Jones face detector [1] was a very significant change in approach
to face detection. Based on this method, several researchers have developed
systems to detect faces of different pose and other objects [2–4]. There is a
considerable computational load on face detectors that rely on only the cues
obtained from still, gray images. For such an algorithm to reliably detect faces
of different scales, it must perform many scans through each image, parsing the
image by small regions, using a small spatial increment. Viola and Jones report
their algorithm having to classify 50,000 regions for a typical image. Considering
that the number of regions that contain a face is likely to be on the order of
1-10, then it becomes obvious that it is important to perform rejections on most
image regions as quickly as possible, while taking great care to avoid carelessly
rejecting face regions. The cascaded face detector is very fast because of its use
of Haar-wavelet-like classifiers that are efficiently calculated from integral images
and the novel method of placing classifiers in a cascade, such that non-faces are
usually rejected quickly.

In the original work, Viola and Jones leave the face and non-face samples
equally weighted, and the number of training samples are on the same order of
? Document prepared by Oak Ridge National Laboratory, managed by UT-Battelle,

LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.



2 Timothy F. Gee

magnitude. They feed the system with 4,916 positive face samples, the greatest
majority of which should pass completely through the cascade. At each layer
they incorporate 10,000 non-face samples, so the number of positive samples is
only a factor of two less than the number of negative samples. At run-time, the
detector will scale the size of the features to find faces of various sizes, but the
base size used for training in such systems is typically about 24x24.

In the design of the cascade, the designer has in mind a particular goal
for the overall system’s detection rate, D, and false acceptance rate, A. These
overall goals can be used to set goals for the detection and false accept rates
of individual stages. This is because the overall performance rates are obtained
from the product of the stage performance rates. That is

D =
C∏

c=1

dc (1)

and

A =
C∏

c=1

ac , (2)

where dc is the detection rate for classifier c, and ac is the false accept rate for
classifier c in the cascade. With this is mind, Viola and Jones state that there
is maximum acceptable ac and minimum acceptable dc for each cascade stage
c, and they continue to add features to be evaluated in a given stage until an
acceptable false accept rate ac is achieved. While this is being performed, at
each iteration, the discriminant threshold θc for the stage is adjusted to ensure
that the detection rate dc is high enough.

Viola and Jones use the steps described in Algorithm 1 to develop each stage
classifier in the detector cascade. This is the Discrete AdaBoost algorithm with
the introduced θ threshold added to the discriminate function. In their case,
each weak classifier fm(x) is a test applied to a single Haar-wavelet-like feature
that has been evaluated on the given training region.

2 Asymmetric Bias Weighting

As discussed above, the original form of the Viola-Jones face detector moved to a
different point on the ROC curve by modifying the threshold, θc. However, this is
clearly non-optimal, since the threshold is determined after weak classifiers have
been chosen. In the later paper [5] by Viola and Jones, they intend to handle
this my multiplying the weight of face and non-face training samples by a bias
term. Initially they advocate multiplying the weight of each sample n by

exp
(
yn ln

√
k
)

, (3)

where yn is the desired or true classification as used in 1. For this application,
yn is 1 for faces and -1 for non-faces. k is a weighting that is used to increase



On Asymmetric Classifier Training for Detector Cascades 3

Algorithm 1 Steps for Discrete AdaBoost with threshold θ

Assume training samples {(xn, yn)}Nn=1

with x ∈ Rk, and y ∈ {−1, 1}

Perform the following steps
1) Initialize observation weights

wn = 1/N for n = 1, 2, . . . N .
2) For m = 1 to M :

a) Fit the classifier fm(x) ∈ {−1, 1}
to the training data weighted according to wn.

b) Compute the error as εm =
∑N

n=1
wnI(yn 6=fm(xn))∑N

n=1
wn

.

c) Compute αm = ln
(

(1−εm)
εm

)
.

(Note: must have εm < 0.5)
d) Set wi ← wi exp[αmI(yn 6= fm(xn))]

for n = 1, 2, . . . N .

3) Final classifier is g(x) = sgn
[∑M

m=1 αmfm(x) > θ
]
.

the detection rate for the resulting strong classifier. The motivation is to make
the false rejections cost k times more than false detections. That is

cost(n) =


√

k if yn = 1 and g(xn) = −1√
1
k if yn = −1 and g(xn) = 1

0 otherwise

, (4)

where again, yn is the true classification, and g(xn) is the estimated classification.
In the Viola and Jones paper, it is shown that the solution’s training error

bound achieves the desired cost ratio by weighting the original importance of the
training samples using k. However, through empirical testing, it became evident
that the weighting only affects the weak classifier in the first AdaBoost iteration.
Then the authors decide to factor the term into parts and apply the Mth root of
the weighting k during each of M rounds of AdaBoost training. This enforces the
same bound, the asymmetric weighting was found to take effect throughout the
training of the ensemble, and improved results were obtained in an illustrative
two-dimensional classification example. Also, beyond this two-dimensional case,
Viola and Jones train their face detector cascade using asymmetric AdaBoost
and compare it to that obtained using symmetric AdaBoost and found that the
new ROC curve points indicated higher detection rates for given false acceptance



4 Timothy F. Gee

Algorithm 2 Forward Stage-wise Additive Modeling [8]

Assume training samples {(xi, yi)}Ni=1 with x ∈ Rk, and y ∈ {−1, 1}

Perform the following steps
1) Initialize f0(x) = 0.
2) For m = 1 to M :

a) Compute (βm, γm) = arg min
β,γ

∑N
i=1 L(yi, fm−1(xi) + βb(xi; γ)),

where b() is a parameterized basis function,
and L() is a norm.

b) Set fm(x) = fm−1(x) + βmb(x; γm).
3) Final classifier is g(x) = sgn [fM(x)].

rates. It is worth noting that the Asymmetric AdaBoost approach has been
repeated by others for face detection and other applications [6].

3 Comparison to Additive Regression

Based on the work of Friedman, Hastie, and Tibshirani [7] AdaBoost iterations
can be shown to be equivalent to Additive Regression when a specific loss func-
tion is used. The steps for achieving a classifier from Additive Regression are
shown in Algorithm 2.

It is shown in [7] that by using the loss function

L(y, f(x)) = exp(−yf(x)) , (5)

with Additive Regression, it is equivalent to Discrete AdaBoost. Here it is shown
that the Asymmetric AdaBoost presented by Viola and Jones is equivalent to
creating a classifier from additive regression using a loss function of:

Lm(y, f(x)) = exp(−yf(x)) exp

y
m∑

j=1

1
M

ln
√

k

 , (6)

where m is the number of the current additive iteration. The proof is as follows.
At each iteration m, the parameters for additive regression are chosen by

(βm, bm) = arg min
β,b

N∑
i=1

exp [−yi (fm−1(xi) + βb(xi))] exp

yi

m∑
j=1

1
M

ln
√

k

 .

(7)



On Asymmetric Classifier Training for Detector Cascades 5

This is equivalent to

(βm, bm) = arg min
β,b

N∑
i=1

ω
(m)
i exp [−yiβb(xi)] , (8)

where

ω
(m)
i = exp [−yifm−1(xi)] exp

yi

m∑
j=1

1
M

ln
√

k

 . (9)

The ωm
i correspond to the sample weights used in the AdaBoost algorithm.

This derivation is identical to that shown in [7] with the insertion of the Asym-
metric weighting term. As in [7] it can be shown that β and b are chosen identi-
cally to that of the AdaBoost algorithm. We can determine the update rule for
sample weights by examining

ω
(m+1)
i = exp [−yifm(x)] exp

yi

m+1∑
j=1

1
M

ln
√

k

 (10)

= exp [−yi (fm−1(xi) + βG(xi))]

exp

yi

m∑
j=1

1
M

ln
√

k

 exp
(

1
M

yis ln
√

k

)
(11)

= ω
(m)
i exp [−yiβG(xi)] exp

(
1
M

yi ln
√

k

)
. (12)

Thus, the sample weights are updated identically to what was proposed in [5].

4 Objective Function

Again, the work of [7] is followed closely in order to determine why it is desirable
to use these iterations to find a strong classifier. The components of the final
strong classifier are chosen in an attempt to minimize the expected value of the
final loss function. Although, the loss function Lm() changes with each iteration,
at the final iteration, M , the loss function is

LM (y, f(x)) = exp [−yf(x)] exp

y
M∑

j=1

1
M

ln
√

k

 (13)

= exp [−yf(x)] exp
(
y ln
√

k
)

. (14)



6 Timothy F. Gee

The objective function to be minimized is then

J(F ) = E
[
exp [−yF (x)] exp

(
y ln
√

k
)]

(15)

= P (y = 1|x) exp [−F (x)] exp
(
ln
√

k
)

+P (y = −1|x) exp [F (x)] exp
(
− ln
√

k
)

. (16)

By taking the derivative of J(F ) with respect to F and setting it to 0, we obtain

F (x) =
1
2

ln
[

kP (y = 1|x)
P (y = −1|x)

]
. (17)

AdaBoost uses the sign of this function to determine classification. It can be
seen that the probability of choosing class y = 1 is multiplied by k.

5 Experimental Results

Although this paper is mainly a mathematical reinforcement of the paper by
Viola and Jones, experimental results are given to provide some further quan-
tification of the method. In a contrived example, 1000 samples are randomly
obtained from each of two class distributions. Each class is distributed by a
two-dimensional Gaussian uncorrelated in x and y and with standard deviations
σx = 2 and σy = 0.5. The mean of class 1 is µ1 = (0,−1), and the mean of class
2 is µ2 = (0, 1). The training samples are shown in Figure 1.

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

Fig. 1. Training data for two classes in example 1.

In this hypothetical case, which is indicative of performance in near-ideal
situations, M = 12 iterations were performed, with the asymmetric weighting



On Asymmetric Classifier Training for Detector Cascades 7

k = 10. The weak classifiers are obtained by simply choosing a feature and
threshold that minimizes the current weighted error. The obtained results are
shown in Table 1.

Table 1. Example 1 performance in percent for strong classifier of 12 iterations, k = 10

True
Detections

False
Detections

True
Rejections

False
Rejections

Training 99.6 7.4 92.6 0.4

Testing 99.5 6.0 94.0 0.5

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Fig. 2. Training data for two classes in example 2.

In the second example, the same class distributions and class separation were
used, but the Guassians were rotated 45 degrees with respect to the feature
axes. The mean of class 1 is µ1 = (−1/

√
2,−1

√
(2)), and the mean of class 2

is µ2 = (1/
√

(2), 1/
√

(2)). The training samples are shown in Figure 2. This
example is indicative of lesser performance using the same method. M = 12
iterations were performed, with the asymmetric weighting k = 10. The obtained
results are shown in Table 2.

6 Conclusions

This paper has shown how Asymmetric AdaBoost can be represented as a form
of Additive Regression, given the correct loss function. The provides clarification



8 Timothy F. Gee

Table 2. Example 2 performance in percent for strong classifier of 12 iterations, k = 10

True
Detections

False
Detections

True
Rejections

False
Rejections

Training Data 98.6 34.0 66.0 1.4

Testing Data 97.7 37.0 63.0 2.3

for how this approach works, as well as increasing the general understanding of
AdaBoost. Examples with simulated classes were used to show how the approach
influences the training goal. The ability of the weak classifiers to precisely par-
tition the sample space can distort the effects of the bias weighting. However, it
can be easily seen from the examples that a significant decision bias is achieved.

References

1. Viola, P., Jones, M.: Robust real-time object detection. In: ICCV Workshop on
Statistical and Computational Theories of Vision - Modeling, Learning, Computing,
and Sampling, IEEE (2001)

2. Li, S.Z., Zhu, L., Zhang, Z., Zhang, H.: Learning to detect multi-view faces in real-
time. In: Proceedings of the IEEE International Conference on Development and
Learning. (2002)

3. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object de-
tection. In: Proceedings of the IEEE International Conference onImage Processing.
Volume 1. (2002) 900–903

4. Wu, J., Mullin, M.D., Rehg, J.M.: Linear asymmetric classifier for cascade detectors.
In: ICML ’05: Proceedings of the 22nd international conference on Machine learning,
New York, NY, USA, ACM Press (2005) 988–995

5. Viola, P., Jones, M.: Fast and robust classification using asymmetric adaboost and
a detector cascade. NIPS 14 (2002)

6. Healy, M., Ravindran, S., Anderson, D.: Effects of varying parameters in asymmetric
adaboost on the accuracy of a cascade audio classifier. In: SoutheastCon, 2004.
Proceedings. IEEE. (2004) 169–172

7. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical
view of boosting (revised with discussions). The Annals of Statistics 28 (2000)
337–407

8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer-Verlag (2001)


