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+ One-group approximation

+ Multigroup diffusion equation

+ Second order ODEs

+ Homogeneous/particular solution
+ Eigenvectors/eigenvalues

+ Plane/curvilinear geometry

+ Transient solution



ABSTRACT

An analytical solution to the time-independent multigroup diffusion
equation in heterogeneous plane media is presented. The solution
features the simplicity of the one-group case which is rather remarkable
given the generality of the multigroup diffusion equation considered.
Beginning with the vector multigroup diffusion equation, the solution is
based upon straightforward application of the mathematical principles
associated with solving a set of second order ODEs. Once the
homogeneous solution is known, the particular solution can be derived by
the method of variation of parameters. In this way, the solution is formed
in a recursive setting for which, with some effort, an explicit analytical
expression can be derived. As a result, a new criticality relation emerges
to yield the criticality constant given the slab thicknesses. Based on this
analytical solution, it now becomes possible to construct an efficient
multidimensional nodal method as well as a 1D transient solution using a
numerical Laplace transform inversion. More importantly, however, is the
educational principle that this new solution represents, i.e., Even though a
problem has been solved in the past, new more efficient solutions should
always be sought.



[ Motivation:
+ One-group diffusion theory: Homogeneous medium
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- Standard Solution:
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- Non-standard Solution;

B (X) =7 (X)(d =5+ 17 (0) 11— 5 |+ (%)

sin(Bj(x—xJ_l)]
hT(X)E sin(BjAJ)
Basis Functions
o sin(Bj xj—x)j
hj ()= sin(BjAJ)




- Criticality: First Require #;(x)=0

Choose x=x*, then

#;(X*)=ht (x")g; +hy (X )¢y
’ (X*):Sin(Bj (X* _XHJ] +Sin[Bj (XJ’ X*)jLinszlej)

Also must require: 9 ;=¢;=0

4
sin(B

Aj)

Implies: ¢;(x*)=0? Not physically
possible for
criticality

Implies instead:sin(B,-A,-)=0 ij(keﬁ):%
J

Implies: Denominator must vanish also!!




+ One-group diffusion theory: Heterogeneous medium
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- Standard Solution:
#i(x)=aje b+ gy (x)

dg, 4 (%) dg; ()
-1 dx dx

-D 2<j<n-1

=-D,

X

_B.x. B.x. _B.x. X .
3{Dj—1aj—1e 14D, b e Tt -Djaje I+ Db =0; J=11n} 2n unknowns

- Non-standard Solution:
3-term recurrence relation with n-2 unknowns

i+ Bidy+7 81 = 1



+ Two-group diffusion theory: Core

2
1(;1)(2 ]¢1( )+ 2VE 11 (X)+ 2V ¢ o (X) =0
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Dz&_zz}’jz(x% P ¢ (X)=0

d—2+82} (X)=0, k=12  =B2=|#

dx? 2
¢1(X)=AX +CY X ESin(I[jX) “Lamarsh’s
¢2(X)= SlAX +82C Y ESinh(VX) text

- Apply BCs for critical condition

+ Two-group diffusion theory: Core/Reflector

- Interfacial conditions/BCs give 4 simultaneous equations
for the critical condition

- Complexity greatly increases with number of regions and
groups



The Challenge:

+ Is there a more concise, more theoretically friendly
analytical approach to heterogeneous MG diffusion theory?

Consequences:

+ Theory applies equally regardless of the number of regions and
groups

+ Educational enrichment: New solution to an old problem

+ Nodal method application (2D/3D)

+ Transient applications

+ Curvilinear geometries

+ n-yapplication



|. Theory:
1. Fundamental Assumptions:

a. Heterogeneous medium

b. Fission neutrons to all groups

c. Fission occurs in all groups

d. Up/Down scatter to all groups (full stride)
e. Steady state spatially dependent source

Xo X X, Xq X

Heterogeneous Medium



2. Governing Steady State Diffusion equation for homogeneous region j
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G
+gZ::129g'j¢g'j (X)==Qq (%)

a. In vector form for region j: M, (X)¢;(X)=-0;(x)

— 2 N _ _ — —_
dAX2+7/11 712 Tiz e 716 #() Q,(x)/ D,
V21 %X2+722 Yos e V26 é, (X Q,(x)/ D,
= X)= D
IVIJ'.G(X)E V31 V32 d%x2+733 ..... a6 ¢(X) ¢3(X) q( ) QB(X)/ 3
....................... 2 ¢G (X) _QG (X)/ DG
Vo1 Vo2 e e dAXZ-l_]/GG

+ For 9¢9=12.G, 09'=12.G
the g-matrix is defined in each
region as (regional subscript is suppressed)

XgV2 g ~|2g ~2gg XV 19 Zgq ,
Va9 [gg ) Vag D, , 9#9




3. General solution
8 (x)=¥;(X)+ 6, (x)
¥;(x)= Homogeneous solution

¢, ;(X)= Particular solution

Straightforward Solution Strategy:

(A) Solve the following without regard to BCs

Mo (X)F;(x)=0

Mic (X)8.;(%)=—0;(X)

(B) Apply BCs to general solution above



4. First consider the homogeneous solution for M, (x)¥;(x)=0

a. Seek solution in terms of eigenvalues B

V2+B21 | ¥;(x)=0

d2 0 ... ... 0
dx?
0 d2 O 0
T a2
ve= 0 e 0 dx2I
0 0 g2
i dx?

L : ,
Mic(X)= g2 7 | Mg (B2)¥(x)-0
I
I
Ex 71,2 e | : 71,1_812
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- Det| My (B]|=0 =B}, k=12..G

+ Note: B?, are assumed to be distinct but may be complex in
conjugate pairs
d2

c. For each k-mode therefore [W-l- Bj?k}‘{!j'k(x)zo

+ Each (group) component will have two independent solutions
hjik(x)zo

. d2
P19 (%)= CgeMic (%) g (¥) [WJF By

Note: Since Bj can be complex, the coefficients Cj,

can also be complex



d. General solution representation for group g is a
sum of all possible solution modes

\ng( ) Z[Crgkh]rk( )+ngkhjk( )}
¥, (x) must be real

d?

™ 2+B2

+ To solve;

i (x)=0
subject to the convenient conditions

h}k(xj)zl hj—k(xj)zo

h}k(xj_ljso hj‘k(xj_ljsl
) __sin(Bj [x X; 1)}
. . " X)7 sin(B.kA.j
Considering a 2D set of basis I R
solutions with above conditions _sin[B x X)J
L i
hjk(x) sm(BJkAJj

Note: The argument of the sine can be complex




+ Representation of Ci,

From original equations by group written as

dzsz( )+Z7gg j(X)=0

and the general solution by group-- implies

G
= B2 C1+gk gzl}/gg, ik =0, k=12,..G

Set of homogeneous equations of rank G-1 for
each k. Thus, there is a one-parameter family
of solutions that can be expressed in terms of
an arbitrary constant. We choose that constant
such that

+ +
Ci, =« lek,

= g=23..G

For consistency: o, =1, k=12,.G

G
392[8’2‘(599 799’}“91«:791’ 9=23..G,k=12.G



e. Intermediate expression for homogeneous solution:

G
Py (X)= Z[agkh}-k (X)Cluc +egchye (X)Cj_lk}

k=1

or in vector form

¥;(x)=a;h;j (x)Cj +ea;hy (x)Cy

Lo 1 hi() 0 . 0] <, ]
o 0 h .. 0O +
......... h}‘L(X)E JZ(X) Cjilz Ci
...... acj;,c;_ i 0 jiG(X)_ _C}_Lle_




f. Determination of C;
+ The general solution is of the form
4;(x) =2} (x)Cjy +ajhy (X)Cy +4, 5(X)
+ If we define 4 s¢j(xj)
¢j_15¢j_1(xj_1j=¢j(xj_lj (from flux continuity)

then at x=x; and x=x;,

I 0
¢( ) ¢pj(x) ozh+ J +Jrozjh J)C.—1

J
¢(11 ¢PJ(XJlj a;ht C++ CJ.‘1
0
giving
Ch=a7|¢,- 45 B =5 (%)
J‘l:aj_ [¢j_1_¢p_j} ¢Fﬁ E¢p,j(xj—1)



+ The final form of the solution then becomes

¢ (x)=|@;hy (X)o7t (¢~ |+ ahi (a7t | 4457 (%)

- Now same form as the one-group case
- For convenience let

Need to be real

8= A ()¢~ |+ B (9 B2~ )+ ,.5()

Note: ¢, are not known




5. Current continuity and recurrence

a. Current continuity at interfaces requires

dé;, (%) dg () |
_Di—ljd—x =-D, ojlx , 2<j<n
Xj1 X

gives
Mi$-Np ,—Pig_,=1; 2<]<n

Mj = DJ dAJ (X)
dx .
N =D. dAl'*l(X) _ dBJ(X)
! 7 dx 5 'odx 5
P. =D, 45,.(%)
! 7 dx _
dA, (x) dB,(x) dg, . (x)
f =D. i + i i\ %)
! ’! dx | 4 dx b dx
d4, ., (x)| ., dB._.(x)| .
_Dj—l Jd;( . ¢pj—1 i_j; . ¢p,j—1_




6. Free surface boundary conditions: Closure
a. Zero flux

h=e=0
b. Zero current:
deb(x)| _deh(9| _,

dx ‘ dx
X Xn
+ Can reformulate conditions on 4, and ¢, such that
# = dh =0
c. To solve:

Mig—N ¢, -Pig_,=T; 2<j<n
with & =¢ =0



7. Solution to recurrence relation (primarily for criticality)
Mi¢-Nip ,—Pig_,=1; 2<j<n

a. Assume form of solution is (for general condition at j = 0)

j
¢ :gj%+pj¢i+|;ﬂj,l f

where the complementary solutions are

M g; 91]_p [9i2]_,
Py Pia| |

A

b. Satisfaction of BC at x = X
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c. Criticality:
+ Obvious n by G determinant condition

N, M, 0 .. 0
0 -P, -N, M,
D =
et 0 0
_Pn—l —N n-1 M n-1 0
0 0 -P, -N,

+ New criticality condition:
Require f, and ¢ to vanish
Require any interface flux vector to be nonzero
- In particular for j =1

%ﬂz{gn%Jréﬂj,l fl]:O

- Implies a must be singular = Det| g, (k) |=0
(like the denominator for the one-group case )



8. Explicit solution to recurrence relation
+ Consider: M ;p,-N;p,,—P;p, ,=0

Pi1~Pi1=0
: P
+ Reformulate with y;= 5
-1
=A.y.—-B.y. :{O_
J7] RAEN 0
M. O N. P. |
SRR R
0
Yi AJlBJyH:{O}
: : j |
Gj=AjB; -- implies #;=[! O}[HGIIM
J pj—l !I—Z I} 1 Llj! I] 0

+ Criticality: Detm]zDet{[l OJ!HG'HH}

n
=2



9. The particular solution
V2475 (0= ()
+ Apply variation of parameters
B, (X) =y (X)uy (X)+ejhy (x)u, (x)
to find




Il Some Results

a. ADS steady State for 4-group xsecs of 10 September 2003 for
uniform source in first region

4-Group Steady State 4-Region ADS
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- By the n by G determinant

Mode K-
Double Precision 9.8825122560660 E-01
Quad Precision 9.8825122560341 E-01
Mathematica 9.88251225603411E-01

- By the G by G determinant but also a recurrence for o.

Mode K-
Double Precision 9.8825122857172 E-01
Quad Precision 9.8825122560341 E-01

Mathematica 9.88251225603411E-01



Relative Error

Comparison of Benchmarks
(2-D Stationary)
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11 Some Discussion and Comments
+ Curvilinear
+ Basis for 2D/3D Nodal algorithm
+ Transients via LTI
+ Other?



