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Introduction

Personal:

• Doctoral Candidate, Nuclear Engineering & Radiological Sciences, University 

of Michigan, Ann Arbor, Michigan

• Research Area: Computational Methods for Neutron Transport

• Research Advisors:  Ed Larsen & Bill Martin

About this work:

• Hybrid (deterministic + stochastic) methods are recently being considered 

with interest for reactor physics problems

• U-M researching hybrid methods for radiation transport problems

• This work formulated for problems with significant transport effects

• Previous related work [1] presented at the 2009 M&C in Saratoga Springs, NY

• New work to be presented at 2009 ANS Winter Meeting in Washington, DC
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Transport Effects

What are transport effects?
• Features of the solution not preserved by numerical approximations to the 

transport equation (i.e., multigroup vs. continuous energy)
• Often occur near material interfaces/boundaries

Conventional computational methods may be inadequate for solving 
problems with transport effects.  Some issues include:

• Deterministic: discretization errors, multigroup approximation, ray effects

We have developed a new method for such problems with the focus of 
simultaneously reducing errors in angle, energy and space.

• Hybrid Monte Carlo-deterministic
• No approximation in energy, angle, or space
• Small statistical errors
• Less expensive than standard Monte Carlo
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Transport Effects (continued)

Aliberti, et al. (2004) & Lebrat , et al. (2002) analyzed a model reflected 
fast reactor using MGSN.

• Coupled energy-angle dependence of the flux near core-reflector interface

• 300+ groups needed for accurate reaction rate results near interface

• 33 groups acceptable if material regions are subdivided near interface and 

accurate spectra computed in each region for multigroup collapse
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Transport Effects (continued)

Issues are caused by the multigroup approximation.
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• Rigorous collapse: continuous function of space and angle
• Multigroup collapse: constant in each spatial region, isotropic weighting fcn
• Replacing angular flux with approximate spectrum to eliminate angular 

dependence results in loss of important information
• Mitigated if a very fine energy grid is used and/or the group constants are 

defined over refined spatial regions

How do we derive low-order equations (like MGSN) that are accurate in 
energy, angle and space?  

What are the advantages of doing this?



Hybrid Method – Overview

I. Reduce the exact transport equation to “low-order” equations 
containing special nonlinear functionals rather than multigroup 
cross sections. 

II. Determine the functionals with continuous-energy Monte Carlo.

III. Solve the low-order equations with a modified discrete ordinates 
method resembling one-group S2.
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Hybrid Method: If the hybrid method functionals are known exactly, the low-order 

equations have no energy, angular, or spatial truncation errors.

Multigroup Methods: Even if the multigroup cross sections are known exactly, the 

low-order equations still have energy, angular, and spatial truncation errors (except 

for infinite medium problems).



Hybrid Method – Starting Point

1-D Planar Geometry Transport Equation with B.C.s
• isotropic scattering and source

• no fission, inelastic scattering or upscattering
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Goal: Compute response, R(x)
• Must be chosen a priori (no post-processing)
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Key Idea: Incorporate Angular Dependence

Introduce the following notation for “left” and “right” angularly 

integrated quantities:
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In this method, we will derive low-order equations for the half-range reaction 

rates. 

Reaction rates at x due to neutrons traveling left and right



Derivation of the Low-Order Equations

1. Introduce a spatial mesh of J cells over the slab.

• Arbitrary mesh spacing

• Cells ordered 

• Cells j=2…J-1 are interior cells; cell 1 and cell J are boundary cells

2. Define the J+1 tent functions, fj+1/2(x) (j=0,…J).
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x
0

xJ+1/2xJ-1/2xj+1/2 xj+3/2xj-1/2x3/2x1/2

1
fj+1/2f1/2

fJ+1/2

Dxj
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Derivation (continued)

3. Apply the following operators to the transport equation.

These operators (1) Multiply the transport equation by the jth tent function, and (2) 

Integrate over all space, all energy, and direction half-ranges (>0 and <0).

In [1], we applied a different operator that (1) Multiplied the transport equation by a 

histogram function, and (2) Integrated over the same phase space.  This resulted in a 

different system of equations with spatial truncation error.

4. Simplify the leakage term using tent function properties.

5. Multiply each term by a “convenient” factor of unity to define functionals.
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Leakage Term
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Here we demonstrate how the operator acts on the leakage term. 

For the interior cells:

1. Separate this term into two integrals

2.  Integrate by parts.

• is 0 or 1 at cell edges

• is            in cell j and             in cell j+1
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Leakage Term (continued)
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Summing Term1 and Term 2, cancellation occurs:



Leakage Term (continued)
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The boundary cells are handled similarly, but the outgoing and incoming currents on 

the boundary appear in the equations. 

Some of the current terms             and              are known from the boundary 

conditions.  

We have made no approximations in obtaining Eq. (6).

 0J   J X

(6)



Result of Applying the Operator
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To avoid the messy triple integral notation, let’s introduce the following shorthand:
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The result of operating on the transport equation is:  

(corresponding equation for integration over <0 not shown).

(7)
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Note: We separated out the spatial integrals so 

that each term is integrated over only one 

spatial cell.
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Multiplication by Unity Factor

Recall that we would like equations for the response,

Multiply each term by a factor of unity containing the most similar       .
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(8)

Terms in brackets will become the 

nonlinear functionals
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Functional Definitions

Define the bracketed terms as the following non-linear “functionals”:
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These functionals are simply ratios of various integrals of the angular flux.

We now substitute in the functional notation as well as the following source notation.
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The Low Order Equations
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With Eqs. (10), (11), the low-order equations and B.C.s are:

(12a)

(12b)
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The low-order equations are:

• Solved with an inexpensive discrete ordinates-like sweep and source iteration

• Exact in space, energy and angle (assuming functionals are known exactly)
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Deterministic Algorithm (like 1GS2)

19E. Wolters, et al., University of Michigan 

Sweep left:

(13a)

(13b)

(13c)

(13d) , ,1/ 2

1 ,1/ 2 1, 1/ 2

1 1 , 1, 1/ 2 1 1 , 1, 1/ 2

1j j t j

j j j j

j j t j j j t j

x
R R S S

x x



 

 

 

     

       

 D 
     D  D  

 1 1 , 1, 1/ 2

1 ,1/ 2 1, 1/ 2

, ,1/ 2 , ,1/ 2

1j j t j

j j j j

j j t j j j t j

x
R R S S

x x



 

 

    

     

  D 
      D   D  

  ,1/ 2

, ,1/ 2

1
J J

J J t J

R J X S
x

 

 
  
 D 

Start at right boundary:

Turn around at left reflecting boundary:

Sweep right:

1 1 ,1, 1/ 2

1 1 1, 1/ 2

1 1 ,1, 1/ 2 1 1 ,1, 1/ 2

2t

t t

x
R R S

x x



 

 

 

   

 

  D 
    D  D  

Repeat until converged.

Compute source terms using most recent estimate of
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Monte Carlo Computation of the Functionals 

The functionals are not known.  Simulate the exact problem (including 

spatial mesh) in continuous energy Monte Carlo.
• Tally all integrals in the numerators and denominators of functionals

• At end of MC simulation, create the set of functionals by taking ratios of these 

tallies
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Why Not Standard Monte Carlo?

Why do we use Monte Carlo to compute the functionals rather than the 

desired reaction rate directly?

We can estimate a ratio of two correlated quantities better than the individual 

quantities themselves.
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Hypothesis: For a given number of particles, Monte Carlo estimates of the 

nonlinear functionals are much more accurate, and have much less variance, than 

direct Monte Carlo estimates of the desired reaction rates. 

Preliminary results indicate the hybrid figure of merit is almost double that of standard 

Monte Carlo.  Therefore, only about half as many particles are needed for hybrid 

method.



Review

To derive the hybrid method, we:

1. Choose the response function r(x,E).  For example: 

2. Multiply the transport equation by a tent function fj+1/2(x).

3. Integrate the result over all x and E.  Then, integrate separately over >0 and <0.

4. Multiply each term by a factor of unity that introduces the reaction rate unknowns.

5. Rearrange the factors in each term to define non-linear “functionals” containing 
ratios of the unknown angular flux.

6. Estimate these functionals with continuous energy Monte Carlo.

7. Solve the low-order equations for the unknowns using an inexpensive one group, 
S2-like sweep and source iteration.
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Review (continued)
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• Single reaction rate: one Monte Carlo calc. (one set of functionals) and one 

deterministic calc.

• Multiple reaction rates: one Monte Carlo calc. (multiple sets of functionals) and 

multiple deterministic calcs. (inexpensive)

• Calculating multiple reaction rates doesn’t increase the expense of the calculation 

significantly.

Characteristics of the Hybrid Method

• No energy, angular or spatial approximations were made in deriving these equations.

• The computed result has only statistical error.

• The results of this method satisfy global particle balance.

         
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Slab Test Problem
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Reflecting 

Boundary

Vacuum 

Boundary

x (cm)0 b=70a=40

Core

(flat, 10 keV 

isotropic source)

Reflector

(no source) 

• Core similar to Fe-56 (N=0.0848/barn-cm)

• Reflector similar to Na-23 (N=0.0254/barn-cm)

• Continuous energy cross sections with resonances approximated by histograms

• Transport effects occur mainly in “resonance” group: 631 eV to 10 keV

Calculate (a) scalar flux and (b) resonance group capture rates with

the hybrid method, multigroup SN and standard Monte Carlo 



Test Problem Cross Sections
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Fig 1. Comparison of ENDF cross sections with test problem cross sections.



MGSN Calculations

Multigroup SN Overview
• S16 Gauss-Legendre quadrature

• Groups ranged from coarse to fine (11g, 21g, 51g,101g, and 251g)

• Equal lethargy groups on [1 eV,10 keV] plus one group from [0,1 eV]

• Scalar flux and reaction rates obtained by post-processing group fluxes

Cross Section Condensation
• Consistent with conventional collapsing techniques 

• Infinite medium calculation for each material in continuous energy Monte Carlo 

=> Fine group (501g) data 

• Fine group data collapsed to coarser groups
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Fig 1.  F(x) across entire slab (left) and near interface (right). Dx=0.5 cm.
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Fig 2. Relative errors in F(x)

Comments:

• MGSN needs 251+ groups to match the accuracy of the 1-group hybrid method 

near the core-reflector interface (x=40) and vacuum boundary (x=70)

• Resonance group errors twice that of energy integrated flux, as expected
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Figure 4. ,res(x) across slab (resonance group capture rate). Dx=0.5 cm.
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Figure 4.  Relative errors in ,res(x) compared to benchmark.

Comments:

• MGSN errors 5-45% near interface; 5-25% near vacuum boundary

• 251+ groups required to match hybrid accuracy near interface and vacuum 

boundary
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Figure 5.  Maximum Relative Errors for Resonance Group Capture Calculation

* = Could be further reduced with variance reduction techniques to push neutrons through the slab 

or by simulating more histories

Comments:

• Greatest error near interface for deterministic methods

• Deterministic methods suffer from spatial truncation error and transport effects
• Need to refine both spatial grid and energy groups dramatically to reduce errors

• Errors well outside benchmark statistical bounds

• For hybrid method, greatest error furthest from the source as expected

Max. Rel. Error Location [cm] Benchmark 1 

11g 60.0% 40.25 0.3%

21g 45.0% 40.25 0.3%

51g 19.2% 41.75 0.4%

101g 10.8% 42.25 0.4%

251g 7.2% 39.75 0.9%

HMCS2X 2.9%* 69.25 0.9%



Conclusions

We have developed a new hybrid method that has no truncation error in 
space, energy or angle.
• Deterministic calculation similar to one group S2 with spatially dependent group 

cross sections
• Uses nonlinear functionals that are estimated with Monte Carlo
• Accurately solves problems with transport effects in energy and angle
• Accurate for problems with strong spatial gradients
• Allows us to study the effects of incorporating angular dependence in problems 

traditionally solved with MG
• Much more accurate than MGSN, which required 250+ groups to capture transport 

effects for test problem

Some difficulties:
• Error propagation in hybrid methods
• Predicting sensitivity of low order equations to statistical uncertainties in 

functionals
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Future Work & Acknowledgments

Future Work
• Extension to eigenvalue problems, anisotropic scattering, and 2-D geom.
• Alternative multigroup cross section generation techniques to determine the 

effects of including spatial and/or angular dependence
• Could it be possible to estimate the functionals deterministically?
• Test on problems with ray effects
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Method <T> <FOM>

Standard Monte Carlo 211.7 259.6 1.82e-5

Hybrid 90.1 335.7 3.31e-5

Hybrid Variance (vs. Standard Monte Carlo)

To test our previous hypothesis, we computed the figure of merit (FOM) for each 

method.

• 20 independent estimates of scalar flux with each method (N=50,000; dx=0.5cm)
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The hybrid figure of merit is almost double that of standard Monte Carlo, so only half 

as many particles are needed.  

The hybrid method has less variance than standard Monte Carlo.

 Compare the variance of hybrid and standard MC methods.
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Test Problem Transport Effects
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(a) True spectra, (b) infinite medium spectra and (c) true net current from 

core to reflector.

Positive net 

current (>0)

At this energy, 

large net number 

of neutrons 

flowing back to 

the core (<0)


