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INTRODUCTION 

 

In the problem of inverse radiation transport, 

measurements of particle leakages from radioactive 

source/shield systems are used to infer unknown 

parameters within the systems. This reconstruction can be 

accomplished by finding the physical parameters of the 

unknown system that minimize the difference between 

calculated detector responses and measured detector 

responses. In recent years, a variety of optimization 

algorithms has been successfully applied to this task  

[1–4], but studies in quantification of uncertainties in the 

final calculated parameters for the unknown system have 

been limited, despite the fact that these parameters were 

determined by using information from detector 

measurements that contain inherent uncertainties. The 

Levenberg-Marquardt method employed in Ref. [1] 

provides a covariance matrix that gives a measure of 

uncertainty for problems in which errors are normally 

distributed and the model is linear in its parameters [5]. 

Reference [4] also provided quantified uncertainties in 

reconstructed parameters, although the method for 

propagating them from measurement uncertainties was 

not identified.  

In order to further address the issue of uncertainty 

quantification in inverse problems, we recently applied 

the generalized linear-least squares (GLLS) approach in 

tandem with the Levenberg-Marquardt optimization 

method [6]. This method was found to be adept at 

quantifying uncertainty for problems with relatively few 

(~2–3) unknown parameters but tended to break down for 

larger numbers of unknowns. In this work, we apply the 

DiffeRential Evolution Adaptive Metropolis (DREAM) 

[7] method for uncertainty quantification to inverse 

problems with larger numbers of unknown parameters.  

 

APPLICATION OF DREAM TO INVERSE 

TRANSPORT PROBLEMS 

 

Markov Chain Monte Carlo Methods 

 

Markov Chain Monte Carlo (MCMC) methods 

provide a generalized methodology for obtaining the 

posterior distribution of the unknown parameters in an 

inverse transport problem. This posterior distribution 

𝑝(𝐮|𝑀𝑜) represents the probability of a model 𝐮 (where 𝐮 

is a vector representing postulated values for the unknown 

parameters) given observed measurements 𝑀𝑜. This 

distribution is proportional to a likelihood function times 

a prior probability distribution. For this study, it was 

assumed that the prior distribution contains an equal 

probability that the parameter lies somewhere within its 

constraints, and a probability of zero that the parameter 

lies outside its constraints. The likelihood function was 

defined as 

𝑝(𝑀𝑜|𝐮) = exp [−
1

2
∑ (

𝑀𝑑(𝐮) − 𝑀𝑑,𝑜

𝜎𝑑

)

2𝐷

𝑑=1

] ,           (1) 

where 𝐷 is the total number of detector measurements, 

𝑀𝑑(𝐮) is the calculated response for detector 𝑑 for 

postulated parameter set 𝐮, 𝑀𝑑,𝑜 is the observed 

measurement for detector 𝑑, and 𝜎𝑑 is the uncertainty in 

the measurement for detector 𝑑. The goal of the inverse 

problem is to find the regions for which 𝑝(𝑀𝑜|𝐮) is at or 

near its maximum.  

In the traditional MCMC approach, a single Markov 

chain is employed. The chain begins at some initial 

parameter set 𝐮𝑡 [for which 𝑝(𝐮𝑡|𝑀𝑜) is calculated], and 

then a trial parameter set is created. The posterior 

𝑝(𝐮𝑡+1|𝑀𝑜) is calculated for this trial parameter set, and 

this trial set is either accepted or rejected according to the 

Metropolis acceptance probability 

 

  𝛼(𝐮𝑡 , 𝐮𝑡+1) = min [
𝑝(𝐮𝑡|𝑀𝑜)

 𝑝(𝐮𝑡+1|𝑀𝑜)
, 1].                             (2) 

 

According to Eq. (2), if the trial point has a posterior 

smaller than the current chain state (i.e., parameters 𝐮𝑡+1 

yield a closer match between calculated and observed 

measurements), then the acceptance probability is 1 and 

the chain is moved to the trial state. If parameters 𝐮𝑡+1 do 

not lead to a closer match between calculated and 

observed measurements, they are still accepted with a 

probability equal to 𝑝(𝐮𝑡|𝑀𝑜)/𝑝(𝐮𝑡+1|𝑀𝑜). The chain 

progresses in this way until it creates the full posterior 

distribution describing the probabilities for the values of 

the unknown parameters.  

 

The DREAM Method 

 

Traditional MCMC approaches have generally been 

inefficient because trial parameters are either too close to 

the current point (leading to a high acceptance rate but 

slow convergence to the posterior distribution) or they are 
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too far from the current point (leading to a low acceptance 

rate). The issue of choosing trial parameters has been 

explored for many years. The DREAM algorithm has 

been particularly successful at finding appropriate trial 

parameters. DREAM has been shown to greatly increase 

the speed of the MCMC process and has also been shown 

to be highly successful for solving difficult optimization 

problems in the presence of noise [8]. DREAM employs 

simultaneous multiple Markov chains (generally 3–5) and 

uses the differential evolution [9] algorithm to generate 

trial points for each chain.  

Suppose we have a set of 𝑁 chains, each containing a 

postulated parameter set 𝐮𝑖 (𝑖 = 1, … , 𝑁). For chain 𝑖, the 

differential evolution approach generates a trial point 

according to 

 

𝐮𝑖,𝑡𝑟𝑖𝑎𝑙(𝑖𝑛𝑡𝑒𝑟) = 𝐮𝑖 + 𝛾(𝐮𝑅1 − 𝐮𝑅2) + 𝐞𝒊.                        (3) 

 

In Eq. (3), 𝐮𝑅1 and 𝐮𝑅2 are the current states of two 

randomly selected chains that are different from chain 𝑖 
and different from each other. The term 𝛾 is a scalar 

parameter generally set equal to 2.38/√2𝑚, where 𝑚 is 

the number of unknown parameters in the problem. The 

term 𝐞𝒊 is a small scalar value, generated randomly for 

each 𝑖 and equally likely to be positive or negative, used 

to increase diversity in the trial chain values. The 

subscript 𝑖𝑛𝑡𝑒𝑟 on 𝐮𝑖,𝑡𝑟𝑖𝑎𝑙(𝑖𝑛𝑡𝑒𝑟) indicates that this is an 

intermediate trial; the final trial state occurs after the 

differential evolution crossover operation. The crossover 

operation is used to choose whether the final trial vector 

will take parameter 𝑢𝑗 , 𝑗 = 1, … , 𝑀 from 𝐮𝑖,𝑡𝑟𝑖𝑎𝑙(𝑖𝑛𝑡𝑒𝑟) or 

its parent vector 𝐮𝑖. This selection process follows the 

rule (for chain 𝑖 and parameter 𝑗): 

 

𝑢𝑖,𝑡𝑟𝑖𝑎𝑙
𝑗

= {
𝑢𝑖,𝑡𝑟𝑖𝑎𝑙(𝑖𝑛𝑡𝑒𝑟)

𝑗
,    if rand < 𝐶𝑅,

𝑢𝑖
𝑗
,                          otherwise,

                           (4) 

 

where rand is a random number between 0 and 1 and CR 

is called the crossover probability, which may be 1/3, 2/3, 

or 1. The value of CR is chosen at random from one of 

these three options for each crossover operation. In the 

case of multiple chains, the Metropolis ratio [Eq. (2)] 

becomes 

 

𝛼(𝐮1, . . , 𝐮𝑁; 𝐮1,𝑡𝑟𝑖𝑎𝑙 , . . , 𝐮𝑁,𝑡𝑟𝑖𝑎𝑙)

= min [
𝑝(𝐮1|𝑀𝑜) + ⋯ + 𝑝(𝐮𝑁|𝑀𝑜)

 𝑝(𝐮1,𝑡𝑟𝑖𝑎𝑙|𝑀𝑜) + ⋯ + 𝑝(𝐮𝑁,𝑡𝑟𝑖𝑎𝑙|𝑀𝑜)
, 1].     (5) 

 

The original DREAM algorithm was extended to 

what is called the DREAM(ZS) method [10], where the 

terms 𝐮𝑖 , 𝐮𝑅1, and 𝐮𝑅2 correspond to parameter values 

drawn from an archive of past chain states rather than 

from the current chain states. This method of sampling 

from past states was shown to be more effective than the 

original DREAM algorithm [10].  

It is the DREAM(ZS) method that has been 

implemented in this work. This method begins by creating 

a (random) archive of potential solutions. The values of 

𝐮𝑖, 𝐮𝑅1, and 𝐮𝑅2 in Eq. (3) are then created by drawing a 

random solution from the archive, and the method 

proceeds to update the chains according to Eqs. (3)–(5). 

Every 𝑚th
 generation (where 𝑚 is usually ~10), the 

current chain states are added to the archive so that as the 

algorithm progresses the archive grows, generally adding 

[due to the selection performed by the Metropolis ratio, 

Eq. (5)] better solutions until the chains approach the 

region of the actual parameter values. The time spent 

searching for this region is generally referred to as the 

“burn-in” period. Once the algorithm reaches the 

maximum number of generations, the burn-in results are 

discarded and the remainder of the archive is used to build 

the posterior distribution and calculate the means and 

standard deviations of the unknown parameters. In this 

work, the burn-in period is defined to be half of the total 

number of generations (specified in advance by the user). 

After the burn-in results are discarded, the archive values 

can be used to calculate a mean value and standard 

deviation for each unknown parameter.  

The DREAM method has been implemented into 

INVERSE, Los Alamos National Laboratory’s toolset for 

solving inverse transport problems. When analyzing 

decay gamma rays, INVERSE uses only the peaks in the 

spectrum. Therefore, in this work, transport calculations 

used in the DREAM method are performed using a 

deterministic ray-tracing routine [11]. 

 

NUMERICAL TEST CASES 

 

Consider the geometry shown in Fig. 1. An 8.741-cm 

radius source of highly enriched uranium (HEU) of 

94.73% 
235

U and 5.27% 
238

U (by weight) is surrounded by 

layers of lead (12.4–12.9 cm) and aluminum (12.9–

13.2 cm) shielding. The simulated total leakages from the 

system for the 144-, 186-, 766-, and 1001-keV uranium 

emission lines are given in Table I. These leakages were 

generated using MCNP and have uncertainties 

representative of actual measurements using a high-purity 

germanium detector.  

Two test cases will be considered. In the first, only a 

single parameter is unknown. This case is used to 

illustrate the equivalence of uncertainties obtained by the 

Levenberg-Marquardt/GLLS method of Ref. [6] and the 

DREAM method. In the second test case, four unknown 

parameters are considered. This case illustrates the 

application of DREAM to a problem in which the GLLS 

method is unable to accurately quantify uncertainties.  

 



 

 
Figure 1. Test Geometry. 

 

TABLE I. Simulated 4π Leakage Measurements for the 

Test Geometry 

Energy Line (keV) Simulated Measurement (𝛾/s) 

144 9.96 × 10
-1

 ± 0.56% 

186 4.67 × 10
3
 ± 0.12% 

766 2.53 × 10
3
 ± 4.26% 

1001 9.86 × 10
3
 ± 2.32% 

 

Test Case 1 

 

In the first numerical test problem, only the 8.741-cm 

source radius was unknown. Ten independent trials of the 

Levenberg-Marquardt/GLLS method and the DREAM 

algorithm were considered. In each independent trial of 

the Levenberg-Marquardt/GLLS method, a different 

initial guess for the unknown parameter was used, while 

each independent trial of DREAM used a different 

random number seed.  In all 10 trials, the GLLS method 

calculated a radius of 8.766 ± 0.054 cm. In all 10 

DREAM trials, the radius was calculated to be 8.766 cm, 

and the uncertainty ranged from 0.053 cm to 0.055 cm.   

The similar results obtained by the two methods suggest, 

but do not prove, that the uncertainties are accurately 

quantified. We are working on methods to verify these 

uncertainties. 

 

Test Case 2 

 

In the second numerical test problem, the three 

internal radii (8.741, 12.4, and 12.9 cm) and the weight 

fractions of the uranium source were considered to be 

unknown. In 20 independent trials, the Levenberg-

Marquardt/GLLS approach was unable to successfully 

locate the unknown parameters and accurately quantify 

uncertainty in them. In 18 of the trials, an uncertainty of 

100% was calculated for at least one parameter. In the 

two other trials, highly imprecise (though accurate) values 

(5.550 ± 4.440 cm and 5.352 ± 4.643 cm) were calculated 

for the source radius. In none of the 20 cases was the 

parameter set leading to the global minimum between the 

measured and calculated detector fluxes found.  

The DREAM method successfully found the 

parameters corresponding to the region near the global 

minimum of the likelihood function and quantified 

uncertainties in each of 20 independent trials. The average 

calculated values and uncertainties (95% confidence 

intervals) for the parameters using the DREAM method 

are given in Table II. The actual parameter values fall 

well within the calculated uncertainty bands obtained by 

the DREAM method, suggesting that the uncertainty 

bands are reasonable. However, we are working on 

methods to verify that the calculated uncertainty bands are 

accurate. We are also exploring the reason why slight 

discrepancies occur for the calculated values and 

uncertainties of the source radius across the 20 test trials.  

 

CONCLUSIONS 

 

Recently, the generalized linear-least squares (GLLS) 

method was applied to uncertainty analysis in inverse 

transport problems. This method was demonstrated to be 

highly effective for problems with a relatively small (~2–

3) number of unknown parameters but broke down when 

more unknown parameters were considered. Therefore we 

have implemented the DiffeRential Evolution Adaptive 

Metropolis (DREAM) method for uncertainty 

quantification for more difficult inverse problems. The 

increased performance of the DREAM method over the 

GLLS method for a problem with four unknown 

parameters has been demonstrated. 

Future work with uncertainty analysis for inverse 

transport problems includes determining when to use 

GLLS or to use DREAM, implementing a method to 

automatically detect when DREAM has sufficiently 

sampled the posterior distribution, and making 

improvements to DREAM so that it requires fewer 

transport calculations to accurately quantify uncertainty. 

In order for DREAM to be applicable to more than 

spherically symmetric geometries, it will be necessary to 

implement parallelization into the algorithm. This is an 

area of current research. Also, as mentioned above, we are 

investigating methods to verify the accuracy of the 

DREAM uncertainties.  
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TABLE II. Results of 20 Independent Trials of the DREAM Method for Test Case 2 

Trial Radius 1 (cm) 

 

Radius 2 (cm)  

 

Radius 3 (cm)  

 

235
U Weight 

Fraction 

Run Time (s) 

1 9.396 ± 2.306 12.39 ± 0.29 12.89 ± 0.29 0.9525 ± 0.0157 114.2 

2 9.374 ± 2.289 12.39 ± 0.29 12.89 ± 0.29 0.9528 ± 0.0157 114.5 

3 9.322 ± 2.248 12.39 ± 0.29 12.89 ± 0.30 0.9524 ± 0.0155 114.0 

4 9.256 ± 2.263 12.40 ± 0.29 12.90 ± 0.30 0.9519 ± 0.0155 114.1 

5 9.476 ± 2.299 12.37 ± 0.28 12.87 ± 0.28 0.9534 ± 0.0156 114.0 

6 9.186 ± 2.089 12.41 ± 0.28 12.91 ± 0.29 0.9515 ± 0.0147 114.2 

7 9.466 ± 2.415 12.38 ± 0.29 12.88 ± 0.30 0.9533 ± 0.0164 114.2 

8 9.330 ± 2.189 12.39 ± 0.28 12.89 ± 0.29 0.9525 ± 0.0151 115.0 

9 9.254 ± 2.252 12.40 ± 0.29 12.90 ± 0.30 0.9518 ± 0.0154 113.8 

10 9.297 ± 2.276 12.39 ± 0.30 12.90 ± 0.30 0.9522 ± 0.0158 114.0 

11 9.269 ± 2.157 12.39 ± 0.28 12.90 ± 0.28 0.9521 ± 0.0150 114.4 

12 9.390 ± 2.218 12.38 ± 0.27 12.88 ± 0.28 0.9529 ± 0.0150 113.5 

13 9.525 ± 2.357 12.37 ± 0.28 12.87 ± 0.28 0.9537 ± 0.0158 119.8 

14 9.315 ± 2.194 12.39 ± 0.27 12.89 ± 0.28 0.9525 ± 0.0149 114.7 

15 9.479 ± 2.484 12.38 ± 0.29 12.88 ± 0.30 0.9534 ± 0.0165 114.6 

16 9.351 ± 2.399 12.40 ± 0.31 12.90 ± 0.31 0.9524 ± 0.0164 114.1 

17 9.320 ± 2.316 12.40 ± 0.29 12.90 ± 0.30 0.9523 ± 0.0161 113.5 

18 9.329 ± 2.365 12.40 ± 0.28 12.90 ± 0.29 0.9524 ± 0.0160 116.0 

19 9.359 ± 2.258 12.39 ± 0.28 12.89 ± 0.29 0.9526 ± 0.0153 116.6 

20 9.356 ± 2.201 12.38 ± 0.27 12.88 ± 0.28 0.9527 ± 0.0151 114.2 

 


