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Abstract. .  Direct to Digital Holography (DDH) has been developed as a semiconductor wafer inspection tool and in 
particular as a tool for seeing defects in high aspect ratio (HAR) structures on semiconductor wafers and also for seeing 
partial-height defects.  While the tool works very well for general wafer inspection, it has unusual capabilities for high 
aspect ratio inspection (HARI) and for detecting thin residual film defects (partial height defects).  Inspection of HAR 
structures is rated as one of the highest unmet priorities of the member companies of International SEMATECH, and 
finding residual thin film defects (in some cases called “stringers”) is also a very difficult challenge.  The capabilities 
that make DDH unusually sensitive include:  1)  the capture of the whole wave--both the classical amplitude captured by 
traditional optical systems, and the phase of the wave, with phase potentially measured to ~1/1000’th of a wavelength or 
~2 to 3 Angstroms for a deep ultra-violet (DUV) laser;  2)  heterodyne detection—this allows it to capture very low 
signal levels; and  3)  a head-on geometry using a collimated laser beam that allows best penetration of HAR structures.  
The basic features and methods of this patented technology are presented, along with simple calculations of signal 
strength and expected noise levels for various circumstances.  Full-wave numerical calculations of electromagnetic field 
penetration into HAR contacts and experimental results from various wafer types and structures are also presented. 

 

INTRODUCTION 

Denis Gabor invented holography during the late 
1940’s in an effort to improve the resolution of 
electron microscopy.1  The invention of lasers 
provided a light source sufficiently coherent to make it 
practically useful.  Also, the original invention had the 
complication of being “in-line” which is to say that the 
illumination and target beams were the same beam—
i.e., they were co-linear with one another.  This meant 
that the hologram was mixed in with the illumination 
beam, which was just a noise source from the point of 
view of the holographic wave.  In the early 1960’s 

Leith and Upatnieks invented optical spatially 
heterodyne holography.2,3  This form of holography 
used a reference beam combining with the target beam 
at an angle to form the hologram.  When replayed the 
illumination beam is separated from the replayed 
target wave.  Along with the use of lasers this made 
holographic recording a practical, if not convenient, 
reality.  Recording and replaying a hologram on film 
or photographic plates in general required hours of 
patient work setting up, developing the plate in the 
darkroom, and then replaying the hologram.  While it 
was possible to use this technique (typically in the 
form of holographic interferometry4) for precision 
scientific measurements, the difficulty and time 



involved precluded its use except in the case of 
measurements considered important enough to justify 
the time and expense involved.  Optical Direct to 
Digital holography was invented at ORNL.5,6  Using 
this invention, a true hologram is recorded digitally so 
that both the amplitude and phase for the original 
target wave are available at every recorded pixel.  This 
technique allows measurements to be made at the 
camera frame rate, so that precision phase and 
amplitude measurements can be made with large-
format digital cameras at high frame rates.  Charge-
coupled device (CCD) cameras with 4Mpixels and 
frame rates of 30 frames per second (fps) are presently 
available and it can be expected that larger formats and 
higher frame rates will become available.  Since the 
potential measurement resolution with the phase-
sensitive measurement is the order of 1/1000’th of a 
wavelength, a deep ultraviolet (DUV) laser allows 
measurements with a potential resolution of 2 or 3 
Angstroms along the direction of propagation of the 
laser beam.  With the digital technology this opens up 
many possible applications, including metrology and 
defect inspection for semiconductor process 
diagnostics.  One immediate and important application 
that has been under development is the inspection of 
semiconductor wafers, and in particular the inspection 
of HAR structures and also of defects that present 
themselves as phase objects, where other optical 
inspection techniques have considerable difficulty in 
achieving a reasonable defect signal, or any signal at 
all. 

BRIEF OVERVIEW OF DDH 

A number of inventions were required to make it 
possible to capture true holograms digitally.  Because 
of dynamic range (photo-electron well depth) 
requirements, CCD camera pixels are not smaller than 
about 7 microns, and typical pixel sizes for a full-well 
depth the order of 300,000 photoelectrons are 12 to 14 
microns.  Since classical holograms are made without 
a lens, the diffraction pattern from point features 
rapidly becomes the order of the wavelength of light 
being used.  This means that it is impossible to capture 
classical sideband holograms from visible or DUV 
light (wavelengths from 800 nm to ~100 nm) with a 
CCD camera—the pixels are much larger than the 
spatial frequencies to be sampled.  Additionally, the 
carrier frequency for classical heterodyne holograms is 
created by interfering the reference and target beam 
waves at typical angles around 30 or 45 degrees.  Once 
again the distance between fringes is the order of 
l q/ sin( ) , which for visible or DUV light and 

typical angles is less than a micron—far too small for 
a CCD camera to record.  Beyond this problem, there 
is the problem of separating the target beams and 
reference beams as well as the twin images (real and 
virtual) so that the measurement produces only the 
phase and amplitude of the target beam.  The DDH 
invention implements techniques to overcome all of 
these challenges and provide the amplitude and phase 
of the target beam for every pixel. 

Distinguishing Features 

There are a number of different features that allow 
the true digital acquisition of holograms. 

 

 

FIGURE 1.  Schematic of a simple DDH system design 
using a HeNe laser and a Mach-Zehnder layout with 
through-the-lens illumination.  This is schematically similar 
to the Fathom DUV system produced by nLine Corporation. 

Multi-Megapixel CCD Cameras 

While not an innovation, the availability of 
megapixel and larger digital cameras is required to 
allow analysis of usefully sized areas with suitable 
throughputs.  Such cameras began to be reasonably 
available in the 1995 time-frame, and this is an 
enabling technology for DDH. 

Focused At Camera Plane 

One of the techniques required for DDH true 
digital holography is to focus the target image at the 
digital-camera recording plane.  Figure 1 
schematically shows a suitable geometry with the 
target (object) imaged on the CCD camera.  This 
eliminates the diffraction fringes that occur in classical 
sideband holography due to the image being 



unfocused, and is one aspect of allowing the digital 
camera spatial sampling to be adequate to record the 
hologram. 

Small angle between reference and target beams 

An additional technique required for adequate 
spatial sampling is to set up the hologram carrier 
frequency so that the digital camera can record it. 
From either Shannon’s Theorem or the Nyquist limit it 
is obvious that there should be at least two pixels per 
fringe of the spatial carrier frequency in order to 
record it.  It can be appreciated that since the distance 
between carrier frequency fringes is proportional to 
1 / sin( )q , then making theta, the angle between the 
reference and target beams, small is a solution.  Small 
combining angles can lead to spatial carrier frequency 
fringe densities that are low enough to be resolved by 
the typical 12-micron pixels of a CCD camera.  
Typical angles for combining the two beams are less 
than a degree.  The DDH design allows for the angle 
to be adjusted from zero up past the Nyquist limit (two 
pixels per fringe) of the CCD camera. This is again 
illustrated in Figure 1, where it can be seen that 
rotating the final “beamsplitter” (in this case used as a 
beam-combiner), schematically shown before the CCD 
camera, can introduce angles from zero degrees and 
up.  In fact, only a degree or two of rotation will 
produce carrier frequencies beyond the Nyquist limit 
of the CCD camera. 

Magnification To Resolution 

In addition to having at least two pixels per fringe 
to record the hologram, it is also necessary to have at 
least two carrier frequency fringes, and possibly three, 
across the spatial resolution (Rayleigh resolution or 
line-space pair resolution) of the optics imaging the 
target on to the CCD camera.  This is discussed in the 
first paper by Leith and Upatnieks2 and in more detail 
in Ref. 7, and can be interpreted in at least two ways.  
The first interpretation is that this is the angle required 
to keep the spatial frequencies in the hologram from 
mixing with the undiffracted beam when the hologram 
is replayed (i.e., produce an angle large enough in the 
replay to separate the hologram from the zero order or 
replay beam).  A second and equivalent interpretation 
is that this is the carrier frequency required to separate 
the hologram (sideband) from the zero-order beam 
(autocorrelation) in Fourier space.  For uncorrelated 
objects (objects which do not have any significant 
signal in the autocorrelation beyond the nominal image 
spatial bandwidth) the zero order beam has an 
autocorrelation bandwidth in Fourier space just equal 

to the bandwidth of the object passed by the lens.  For 
highly correlated (repetitive) objects the 
autocorrelation bandwidth is equal to twice the object 
bandwidth, and it is necessary to place three carrier 
frequency fringes (three line-space pairs) across the 
spatial resolution of the optics in the CCD plane in 
order to separate the hologram sideband from the 
autocorrelation (carrier frequency must be three times 
the image bandwidth).  What this means is that the 
target must be magnified enough so that there are a 
minimum of four CCD pixels (two carrier frequency 
fringes) across the spatial resolution of the optics in 
the image plane, or for highly correlated objects, at 
least six CCD pixels (three carrier frequency fringes).  
The carrier frequency fringe density and magnification 
are independently controlled by the beam-combiner 
angle and the magnification of the optics.  The beam-
combiner angle can be controlled in real-time, but for 
precision diffraction-limited optics the magnification 
of a particular objective lens is usually fixed, so the 
relationship of the magnification to the spatial 
resolution must be included in the design of the optics. 

Fourier Transform Analysis 

Rather than going through the complex derivation 
for the use of Fast Fourier Transform (FFT) analysis to 
separate the target beam and object beams, graphical 
examples will be presented.  See Ref. 7 for more 
details. 

 

FIGURE 2.   Section of a raw hologram of a chrome on 
chrome Air Force Resolution Target. 

Figure 2 above is a section of a raw hologram 
showing the raw carrier frequency fringes from the 
reference and target beams interfering as modulated by 
the target.  This digitally recorded hologram records 
amplitude and phase the same way that all heterodyne 
holograms do.  Amplitude of the target wave is 
recorded by the fringe contrast—as the target beam 
amplitude changes the fringe contrast darkens or 
brightens.  The actual spatial motion of the fringes 
records phase.  As distance or index of refraction of 
the target changes the phase of the wave changes 
causing a modulation of the carrier frequency fringes, 
and the fringes move away from being perfectly linear 



and move up or down depending on whether phase is 
increasing or decreasing.  For a well-designed DDH 
system the carrier frequency fringes are very linear 
and evenly spaced, only modulated by the target object 
height changes or index of refraction changes.  The 
carrier frequency is represented by a single point in 
Fourier space, since it is effectively just a plane wave 
in this case.  To the extent that there is some curvature 
or variation from linear spacing of the fringes when a 
perfectly flat object is made into a hologram, the 
system can be “flat-field corrected” to remove both the 
phase variation and any amplitude variation, by 
dividing the complex image of whatever is the target 
by a complex image of a perfectly flat object, where 
the same optical conditions and image processing are 
used for the “flat-field” object hologram as for the 
hologram being corrected.   

In order to have good FFT analysis of digital 
holograms the carrier frequency needs to be linear 
over a megapixel hologram within one or two waves 
(one or two carrier frequency fringes).  Otherwise the 
carrier frequency becomes spread out over many 
frequencies (cannot be identified by a single 
frequency), and analysis of the holograms becomes 
much more difficult. 

 

 

FIGURE 3.  This is the FFT of the complete hologram 
partially shown in Figure 2.  The log of the frequency 
amplitudes are plotted as a gray-scale against x, y 
coordinate.   

The basic features of FFT analysis of digital 
holograms can be seen in Figure 3.  Zero frequency for 
both x frequencies and y frequencies is in the center of 
the figure.  The horizontal axis is for x frequencies and 

the vertical axis is for y frequencies.  A CCD camera 
records light intensity, which is electric field squared.  
The hologram electric field is the sum of the target and 
reference electric fields, E E EH R T= + .  Thus the 
circular pattern in the center is the FFT of the 
reference beam electric field squared plus the target 
beam electric field squared (autocorrelation—the FFT 
of a square in real space is the autocorrelation in 
Fourier space).  The sideband in the top right quadrant 
is the FFT of the target beam electric field times the 
reference beam electric field complex conjugate, and 
vice-versa for the sideband in the lower left quadrant.  
Since the reference wave is effectively a plane wave, a 
single point in Fourier space represents it, which is the 
brightest spot or carrier frequency in each of the 
sidebands.  The strong vertical and horizontal lines in 
the FFT, at the figure center and coming from each of 
the sidebands, are due to differences in intensity at the 
pixel edges of the CCD (due to variation of the image), 
which since they represent square waves contain all 
frequencies resolvable by the CCD camera.  The target 
beam phase and amplitude are recovered from the FFT 
by translating the FFT zero-zero axis to the carrier 
frequency of one of the sidebands, and applying a 
smooth digital low-pass filter (e.g., Hanning window 
or Butterworth filter) so that everything outside the 
target wave sideband is zeroed out.  When the inverse 
FFT of this centered and filtered sideband is taken, 
phase and amplitude images can be constructed from 
the resulting complex image.  Figure 4 is the resulting 
3D phase image from inverting the sideband of the 
FFT of the section of hologram shown in Figure 2. 

 

 

FIGURE 4.  The 3D image above is produced by taking the 
FFT of Figure 2, translating the zero-zero axis to the 
sideband carrier, applying a digital filter and taking the 
inverse FFT and the phase of the resulting complex image is 
used to produce the true 3D image (height plus x-y 
dimensions). 

Advantages For HARI And Phase Objects 

The DDH technology has some unique advantages 
for High Aspect Ratio Inspection and an obvious 
advantage for phase objects.  In particular for HARI 
work: 

Digital Filter 

Sidebands 

Autocorrelation 



 

FIGURE 5.  Comparison of HAR structure penetration by 
optical methods.  Light-scattering and incoherent light 
penetrate high aspect ratio structures poorly compared to a 
collimated laser beam. 

 
1. The head-on geometry with a collimated laser beam 

(Gaussian beam waist) at the wafer surface has the best 
chance of penetrating HAR structures.  This is 
demonstrated graphically in Fig. 5 and the head-on 
geometry schematically in Fig. 1.  Light-scattering by 
definition enters or leaves at an angle, which makes it 
unsuitable for HAR penetration.  Similarly, incoherent 
light can only be collimated over very short distances, 
again making it incompatible with penetration of HAR 
structures.   

2. Because the technology is spatially heterodyne (has a 
spatial carrier frequency) with the power in the 
hologram proportional to reference beam electric field 
multiplied by target beam electric field with the 
reference wave supplying much of the power, the DDH 
technology is sensitive compared to classical amplitude 
measurements.  For instance, a 10% electric field return 
would be a 1% signal (electric field squared) for a 
classical bright-field or light-scattering tool, but is a 
10% signal for the spatially heterodyne DDH tool. 

3. In addition to being spatially heterodyne, the DDH 
technology is phase sensitive, with the typical photon 
noise-limited phase resolution being as small as one-
thousandth of a wavelength.  This gives an additional 
level of sensitivity to DDH measurements, because of 
the very high sensitivity of the phase measurement. 

4. Relatively low incident energy:  the fact that it is both 
spatially heterodyne and phase sensitive allows a DDH 
tool to inspect with relatively low energy levels.  For 
instance, only the order of four microjoules would be 
required to expose the wafer field of view (fov) of a 4 
Mpixel CCD camera using a 248 or 266 nm DUV laser, 
assuming a relatively poor 10% reflectance from the 
wafer and a high efficiency camera, and throwing away 
half the target illumination light in the beam-combiner 
(note that Si or SiO2 on Si is nominally 70 to 80% 
reflective at, for instance, 266 nm). 

 
For inspection of phase sensitive objects (e.g., very 

thin layers of oxide or other material left after an 
etch—“stringers”), a tool that measures phase is 

required.  Either brightfield or darkfield amplitude 
tools have a very hard time seeing these defects 
because they look exactly like their surroundings (the 
amplitude reflection is extremely similar or identical to 
the material around them).  However, a tool using the 
DDH phase-sensitive technology sees these defects 
easily, since they can return a very different phase 
signal due to either their thickness or their optical 
properties, even though the amplitude signal is 
changed little or not at all. 

SIGNAL CALCULATIONS 

The expected return signal from coherent light 
incident on sub-wavelength HAR structures is a 
difficult calculation, both because the structures are 
sub-wavelength and because they are high aspect ratio.  
Simple estimates of the return signal can be made 
using just ray-tracing height analysis and assuming no 
phase-change on reflection or change of index of 
refraction and combining this with diffraction 
estimates.  More sophisticated estimates can be made 
by using an exact one-dimensional (1D) version of 
Maxwell’s equations—the transmission-line equations 
(see, e.g., Ramo, Whinnery, and Van Duzer8), along 
with the full optical properties of a materials stack and 
adding simple diffraction estimates.  Estimates of the 
penetration of HAR contacts have been made using a 
full-wave 3D electromagnetic finite-element boundary 
value numerical calculation and will be discussed 
below.  The most sophisticated analysis uses a full-
wave vectorial finite-difference time-domain 
numerical solution, where some initial work has been 
done for the DDH problem and codes are available to 
address these types of structures on wafers.  Solvers 
that do not account for all penetrable (by DUV 
radiation) surfaces and the optical properties of all 
materials involved along with the sub-wavelength 
geometry are not suitable for addressing the exact 
numerical solution of this class of problems. 

Simple Phase Estimates 

Simple estimates of phase signal strength can be 
made by just using known indexes of refraction and 
geometrical heights to calculate the expected phase 
change.  For instance, for 50 nm of SiO2 left at the 
bottom of a 1 micron deep contact in the oxide, and 
neglecting first-surface reflections and phase change 
on reflection from different materials, the expected 
phase difference for a wave penetrating the “bad” 
contact (contact with oxide at the bottom) as compared 



to a wave penetrating a good contact (no oxide at the 
bottom) is just the phase change due to a double pass 
through the oxide (once going in, once returning) 
minus the phase change due to a double-pass through 
the equivalent depth of air.  So the net difference in 
phase signal is given by: 

 1 22( ) /n l n l= −f lD  (1). 

Where n1 is the index of refraction of SiO2 at the DUV 
wavelength, n2 is the index of refraction of air at the 
DUV wavelength, l is the path length over which the 
material difference occurs (air vs. SiO2) and λ is the 
DUV wavelength.  For 266 nm, the index of refraction 
of SiO2 is ~1.5 and the index of refraction of air is 
~1.0, so that the expected phase change, ∆φ, for the 50 
nm path length is 0.38 waves, or more than 100 times 
the expected noise level for photon statistics.  This 
only holds if the transverse dimensions of the defect 
(contact in this case) are larger than the Rayleigh 
resolution of the lens, otherwise this signal must be 
corrected for diffraction.  For equations to make 
simple estimates of the phase change on reflection or 
differences in the phase change on reflection for 
different optical materials, see the TL equations below, 
or see the paper by Church and Lange9. 

Simple Diffraction Corrected Phase Signal 

For sub-resolution objects, the phase signal can be 
estimated by spreading it out over the resolution of the 
imaging optics.  Coherent electric fields add in a 
vectorial fashion, of course, so the electric field signal 
from the sub-resolution object adds with the electric 
field from the surroundings.  Since the intent is to 
subtract similar areas from neighboring die to find 
differences, without loss of generality the neighboring 
objects can be assumed to just be a reflective plane 
(when two die are subtracted, to the extent that they 
are similar the neighboring objects drop out on 
subtraction, leaving only the difference).  The phase 
signal can be assumed to spread just as the amplitude 
due to the vector addition of the electric fields, so a 
simple estimate of the signal from a sub-resolution 
target or defect can be found by just spreading the 
“phase volume” of the defect out over the area of the 
Rayleigh resolution of the imaging optics.  The 
Rayleigh resolution is the distance from the peak to the 
first zero of the Airy function for a point being imaged 
by a diffraction limited lens, and is given by (for on-
axis illumination with coherent illumination): 

 /R NA=d l  (2) 

where λ is again the laser illumination wavelength and 
NA is the numerical aperture of the imaging optics.  
Again for a 266 nm DUV laser and for instance a 
0.5NA objective, the phase signal is spread out over an 
area of the Rayleigh resolution squared.  Given once 
again a 50 nm layer that is for instance 200 nm 
diameter, the expected phase volume is (200 nm)2 
times the 0.38 waves already calculated.  Dividing by 
the Rayleigh resolution squared gives the desired 
simple estimate of the phase signal from this defective 
contact, when spread out by diffraction, as 0.054 
waves, still more than an order of magnitude larger 
than the theoretical photon statistics noise level.  It 
will be shown below that the signal can actually be 
much larger than this due to index of refraction 
differences of materials. 

Exact 1-D Signal Calculations—
Transmission Line Equations 

As already mentioned above, the transmission-line 
(TL) equations are an exact solution of Maxwell’s 
equations in one dimension.  As such, they are very 
useful for calculating the exact reflection, including 
multiple surfaces and phase, for normally incident 
waves on materials stacks on wafers.  The interested 
reader is referred again to Ramo, Whinnery, and Van 
Duzer8 for discussion of calculating the reflected 
voltage given load impedances, and calculation of the 
load impedance for a particular material and thickness 
given its electrical properties.  In order to use the TL 
equations to solve for reflected electric field, V 
(voltage) is replaced by E (electric field), I (current) is 
replaced by H (magnetic induction), transmission line 
capacitance per unit length is replaced by the dielectric 
constant ε of the medium, and transmission line 
inductance per unit length is replaced by the magnetic 
permeability µ of the material.  The only fly in the 
ointment here is calculating the dielectric constant 
from the commonly given/measured optical properties 
of semiconductor material, n (index of refraction) and 
k (extinction coefficient).  For instance, the 
“capacitance” and “inductance” to be used in the TL 
equations for material X can be calculated from (see 
Born and Wolf10 for calculation of the dielectric 
constants from n and k): 

  

 0 1 2( )X XC iε ε ε ε= = −  (3) 

 2
1 (1 )X Xn kε = −  (4) 



 2 2 Xkε =  (5) 

 0XL = m  (6) 

where CX is the capacitance of material X to use in the 
impedance calculation, LX is the inductance of 
material X (assumed to be non-magnetic), ε0 is the 
dielectric constant of free space, µ0 is the magnetic 
permeability of free space, and nX and kX are the index 
of refraction and dimensionless extinction coefficient 
(the commonly quoted optical n and k) of material X.  
Armed with the capacitance and inductance and 
material thickness, the impedance is immediately 
calculated and the amplitude and phase of the reflected 
wave are calculated from: 

 0

0

( )
( )

L
O I

L

Z Z
V V

Z Z
−=
+

 (7) 

where VO is the reflected electric field at the location 
just above layer X, VI is the incident electric field just 
above layer X, Z0 is the characteristic impedance of 
the material just above layer X and ZL is the load 
impedance of layer X, given its thickness, 
characteristic impedance, and the impedance beneath 
it.  The layer furthest down in the stack is assumed to 
have no second surface reflection, so that its 
impedance is just the characteristic impedance of that 
material (thickness is assumed effectively infinite—
appropriate for materials that absorb everything not 
reflected that enters the material—e.g., Si at 266 nm), 
and the impedance of the entire stack can be built up 
one layer at a time. 

The exact reflected electric field can thus be 
calculated for complicated materials stacks and can be 
expected to be correct for the center of large (large 
compared to the wavelength) areas, including 
reflections from all surfaces and changes of phase at 
all surfaces. 

Returning to the example of calculating the signal 
from 50 nm of oxide at the bottom of a contact vs. a 
contact with only Si at the bottom, the calculated 
phase difference is 0.71 waves using the TL equations 
rather than the 0.38 waves calculated from the simple 
phase model discussed earlier.  So there is almost a 
factor of two more signal due to the materials 
properties when the exact TL equations are used. 

A more complex example of using the TL 
equations to calculate the expected signal is shown in 
Fig. 6.  In this example the theoretically predicted 
return signal from the wafer, calculated using the 1D 

TL equations is compared to the actual measured 
signals.  The wafer is an International SEMATECH 
supplied contact wafer with 250 nm design rules.  It 
can be seen that the TL equations are qualitatively 
very good, but apparently miss the actual transverse 
dimensions by quite a bit, as would be expected for 1D 
(z-dimension) equations when the transverse features 
become the order of or smaller than the wavelength of 
light. 

 

FIGURE 6.  Comparison of 1D TL theory with actual 
experimental measurements from the Fathom DDH tool.  
Top left is the theoretically predicted amplitude for one of 
the International SEMATECH IDA Contact wafers, and top 
right is the measured amplitude (electric field).  Bottom left 
is the theoretically predicted phase and bottom right is the 
actual measured phase.  The TL equations theoretically 
predicted signal for the various material stacks (incident field 
1, incident phase 0 degrees) is printed to the left.  Materials 
in the stack for the images shown include Si, SiN, SiO2, and 
Cu. 

Combining Diffraction and TL Equations 

Just as for the simple phase equations, simple 
estimates of diffraction can be combined with the TL 
equations to estimate the signal.  Using the same 
example of a 0.5NA objective, the expected signal 
after diffraction becomes almost a factor of two larger 
when the TL equations are used to estimate the phase 
change.  The effect of diffraction is modeled 
identically in both cases.  It is worth noting in passing 
that the TL equations also give the correct value for 
the expected electric field amplitude, so both 
quantities are correctly modeled with the TL 
equations, whereas the simple phase model does not 
provide the amplitude at all.  For the example cited, 
the TL equations predicted electric field amplitude 
difference between the defective and non-defective 
contact, not including diffraction, is about 0.04 where 
the incident electric field is taken to be 1.0.   



Penetration Of EM Waves Into Contacts 
Or Vias In Dielectrics—Full Wave 3-D 
Boundary Value Numerical Solutions 

Penetration of electromagnetic (EM) waves into 
metallic structures is well understood--any feature less 
than a half-wavelength is cutoff for rectangular 
structures (the wave does not penetrate), and less than 
~0.7 wavelength is cutoff for cylindrical metallic 
structures.  This applies to a collimated laser beam just 
as it does to all EM waves.Penetration of EM waves 
into contact holes in a dielectric is more difficult to 
understand since the wave propagates in the dielectric 
and “leaks” out of the contact (neglecting any possible 
sub-wavelength effects, nothing can come back into 
the contact because of total internal reflection from the 
dielectric side).  Additionally, the problem is not a 
“far-field” problem since the depth of the contacts is 
only a few wavelengths.  The far-field approximations 
often used to study propagation in “leaky” dielectrics 
are not applicable (see, e.g., Yariv11). 

Lee Berry and John Whitson at Oak Ridge National 
Laboratory developed a 3-D full-wave numerical 
electromagnetic code for radio-frequency (RF) plasma 
reactor studies.  The code was modified by one of the 
authors (CET) to study laser penetration into sub-
wavelength HAR structures.  The EM fields can have 
3-D structure, but the geometry (excluding sources) is 
assumed to have one symmetry dimension (the radial 
dimension in the case of a contact). The code is a finite 
difference boundary-value solver using a component 
of the potential of E and of the potential of B in the 
directions with spatial variation.  Spatial variations due 
to source currents in the ignorable dimension are 
resolved into independent Fourier modes. 

Typical results of applying this code to the study of 
contacts in dielectric are shown in Fig. 7.  Due to 
memory limitations (at the time the calculation was 
made only 2 gigabytes of virtual memory were 
available), it was necessary to limit the input boundary 
to nine wavelengths (only part of the input boundary is 
shown in the figure) and limit the z-dimension 
(direction of propagation) calculation to 12 
wavelengths of useful calculation.  Typical features of 
boundary-value code solutions are shown by this 
calculation.  The small apparent “ridge” in the electric 
field at the center of the contact is an artifact produced 
by the finite boundary effect for the input wave (a 
much longer input boundary should remove this).  
With a boundary-value code, finding the reflected field 
is difficult, since the code calculates the sum of all 
fields propagating in all directions given the imposed 
boundary values.  To avoid this problem an absorptive 

boundary condition was used in the far z-dimension.  
This addition of absorption changes the material 
impedance where the absorption is added and causes 
some reflection of the wave, which can be seen as the 
standing wave pattern in the solution for the y-value of 
the electric field.  The actual value of the inward-
propagating electric field is calculated from the 
standing-wave ratio at 12 wavelengths, and is found to 
be 64% of the electric field strength at the entrance to 
the contact.  This would be the signal actually 
predicted to be seen by a DDH tool, but the signal seen 
by a classical amplitude tool would be the square of 
the electric field, or ~41% of the input power.  It can 
be seen that the field is indeed “leaking” out, but 
slowly for the present purposes.  The calculation of the 
field at 12 wavelengths for a quarter-wavelength 
contact corresponds to the wave penetrating an aspect 
ratio of 12, both going in and returning to the surface. 

 

FIGURE 7.  Full-wave 3D numerical solution for a nine 
wavelength boundary “plane wave” launched into a quarter-
wavelength cylindrical hole (contact) in dielectric.  The 
solution for the y-direction (radial) electric field is plotted vs. 
penetration distance z, in wavelengths, into the contact and 
vs. the radial dimension x of the contact.  The solution 
exhibits a standing wave due to an absorptive end boundary 
condition.  The propagating field at 6 wavelengths (aspect 
ratio of 12, in and back out) is ~64% of the entrance field. 

 

Full Wave 3-D Finite Difference Time 
Domain Solutions 

Other 3D numerical codes are available for analysis 
of these kinds of difficult problems.  One example is 
the finite difference time domain code TEMPEST 
developed at Berkeley for semiconductor wafer 
lithography simulations and 3D scattering 

Input Boundary 



simulations.12,13  Since this code propagates the wave 
in the time domain, reflections become much easier to 
deal with and it is possible to separate incoming and 
outgoing propagating waves.  Also, the code was 
designed for semiconductor lithography, which gives it 
an excellent start on being useful for studying coherent 
reflections from wafer geometries.  The code has also 
been developed for commercial use as part of a suite 
of tools for lithography simulation by Panoramic 
Technologies.14  Some very preliminary work has been 
done for nLine Corporation using the Panoramic 
Technologies suite.  Figure 8 shows the electric field 
intensity resulting from a plane wave incident on a 
particle.  The calculated field compares favorably with 
the measured field pattern published for an atomic 
force microscope (AFM) and scanning near-field 
optical microscopy measurement.15   

 

FIGURE 8.  Electric field intensity due to scattering from a 
particle as simulated by the Panoramic Technologies EM 
Suite.  The vertical and horizontal distance scales are in 
microns (1 micron vertical, 10 microns horizontal) and the 
gray-scale for the electric field is relative to an incident 
intensity of 1.0, and varies from 0.95 to 1.05 with the 
particle as the black spot in the center. 

NOISE SOURCES AND ESTIMATES 

Discussion Of Noise Sources 

Anything that is involved in producing the laser 
beam, propagating the beam, reflecting the beam, 
imaging the beam, capturing the image digitally or 
computing the amplitude and phase or amplitude and 
phase differences from the digitally captured hologram 
is a potential source of noise, including all the optics 
and mechanical systems associated with the optics, 
stage, vacuum chuck, or wafer.  Some sources of noise 
are more important than others, and even if all these 
sources of noise are zero, there is still a fundamental 
photon counting statistics noise limit due to the 
dynamic range of the sensor and the finite power of 
the laser.  Various possible noise sources are discussed 
below and quantified where reasonable. 

Back-Reflections And Ghosts 

One very strong known source of noise for 
coherent laser illumination is reflections from the 
optics that propagate back to the CCD camera and 
interfere with the signal beam or the reference beam.  
If perfect anti-reflection (AR) coatings could be 
manufactured then the optical noise due to reflection 
interference could be driven to zero.  Such perfect 
coating technology is not available, but extremely 
good coatings are available and coatings with 
measured reflectances less than 0.01% for 266.1 nm 
normally incident light have been produced for nLine 
Corporation.  Figure 9 below shows a sample 
measurement from just such an AR coating on fused 
silica. 

 

FIGURE 9.  Sample measurement of an AR coating on 
fused silica, which has less than 0.01% reflectance at 266.1 
nm for a normally incident wave. 

Even with an absolute state of the art AR coating, 
the predicted noise due to a direct back-reflection 
(reflection from a single surface which propagates 
back to the CCD camera) can be significant.  
Assuming that the back-reflection covers about the 
same area as the original image (could be focused or 
expanded, there is some design control over this) then 
the predicted phase-noise level due to a single 
reflection from a 0.01% AR (10-4) coating is about 1% 
(10-2) of a wavelength, and can have this kind of effect 
on the carrier fringe intensity, distorting it by the 
amount of the electric field.  This is because the 
hologram is recorded as the electric field and the noise 
electric field strength is proportional to the square root 
of the reflected noise intensity.  If through-the-lens 
illumination is used, then there can be as many as 12 
to 20 surfaces reflecting directly back to the CCD 
camera, so that noise levels become too high.  This 
back-reflection noise can be reduced another factor of 
100 to 1000 by using a polarizing-beam-splitter (PBS) 
to reflect the beam into the objective and designing the 
objective with a quarter-wave plate as its last optical 
element.6 This can theoretically reduce the back-
reflections another two to three orders of magnitude, 



so that the back-reflection noise level theoretically 
drops below the photon statistics noise level.  Ghost 
reflections can then become a dominant noise source. 

Ghosts are multiply reflected beams (from two or 
more optical surfaces, e.g., first and second surface of 
a lens) that propagate back to the image plane (CCD 
camera).  Since such a beam has reflected from two or 
more AR coated surfaces, its intensity could be down 
eight orders of magnitude (for a 0.01% reflective AR 
coating).  Thus careful optical design and extremely 
good optical coatings can also be used to put the noise 
level from ghosts below the photon statistics noise 
level.  It is however very important to insure that the 
AR coatings meet the required specification and that 
there are no ghosts focused so tightly as to exceed the 
allowable noise level. 

Vibrations 

Vibrations are one of the worst enemies of 
holography.  It is easy to calculate that an optical path 
vibrational change of 1/8’th of a wave during the 
exposure will wash out the carrier frequency fringes 
by 30% (the fringe contrast drops to 70% of its 
original value) which considerably increases the noise 
in a hologram.  This drop in fringe contrast can be 
understood by just considering a cosine fringe pattern 
(intensity due to interfering plane waves, a2 + b2 + 2ab 
cos(θ)):  if the pattern moves 1/8’th wave, then the 
peak intensity moves over the 0.707 intensity point 
and the 0.293 intensity point moves over the zero-
intensity point.  The average peak value becomes 0.85 
and the average minimum value becomes 0.15.  
Calculating the fringe contrast as (Imax-
Imin)/(Imax+Imin) immediately results in a (with 
vibration) fringe contrast of 70% of the contrast 
without the 1/8’th wave vibration.  Much more motion 
than this will totally ruin the hologram.  A quarter-
wave optical path change due to vibration drives the 
contrast to 50%, and a half-wave of vibration drops it 
to zero.  Stiff, well-damped optical and mechanical 
designs can resolve this problem, along with short 
exposures of the camera.  A nominal rule of thumb is 
to require that vibrational movement of the optical 
path during the camera exposure be less than 1/10’th 
wave. 

Another way that vibrations can induce noise is to 
change the beam pointing from shot to shot.  This can 
create wedge or bowl between the holograms being 
differenced.  The amount of wedge or bowl is 
dependent on the details of the optics and the amount 
of the pointing motion. 

Image Registration And Interpolation 

If the complex holographic images are not well 
aligned when they are differenced then the difference 
will have noise in it due to the misregistration.  
Sources of alignment error include stage resolution 
and accuracy, accuracy of the original reticle and 
stepper shooting the die, and any possible angular 
variation of one die to another.  In order to accurately 
subtract two images, they generally need to be aligned 
to one another in software to eliminate the noise due to 
misregistration.  This is typically done to an accuracy 
of about 1/10’th of a pixel.  Thus the phase noise along 
a long edge (an edge whose length is longer than the 
Rayleigh resolution of the imaging optics) can be 
estimated as:   
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Where n1 is the index of refraction of the line edge 
material, h is the height (or depth into the wafer) of the 
line, PS is the pixel size in object space (assuming 
square pixels, the linear dimension along one edge of 
the pixel divided by the magnification of the imaging 
optics), PR is the fractional pixel resolution of the 
software registration and interpolation, λ is the 
illumination wavelength as before and the other 
symbols are previously defined. 

Noting that as discussed above there is a requirement 
for six pixels across the Rayleigh resolution: 

/ 6PS R= d  (9) 

Then the expression for the noise becomes: 

1( ) /(6 )r n hPR∆ =f l  (10) 

The factor of two due to the illumination optical wave 
penetrating and returning from the line (traversing it 
twice) is dropped since the same applies to defects, so 
the phase noise can be considered as the noise 
equivalent to a defect height spread over the optical 
resolution.  It’s interesting that the noise becomes 
dependent only on the registration accuracy and the 
line height, assuming equivalent indexes of refraction 
for any defect and the background material.  For a 500 
nm line height the height of a defect equivalent to the 
noise would be 1.25 nm, if the index of refraction is 
1.5 and using 1/10’th pixel for the registration 
accuracy, and converting phase to height using the 266 
nm wavelength.  For features with edge lengths shorter 
than the Rayleigh resolution, the phase noise due to 



registration and interpolation is even less than 
calculated above. 

Stray Light 

In order for coherent interference from the forward 
scattered stray light due to optical surface roughness to 
be less than the photon noise, the scattering should be 
less than about 10-5 of the incident power, for all 
surfaces.  Assuming something on the order of 100 
optical surfaces from the laser to the camera, and also 
assuming that the associated solid angles tends to 
favor only those near the camera, then the scattered 
power needs to be about 10-5 of the incident power for 
any optical surface, particularly those near the camera 
or imaged at larger NA on the camera.  Using the total 
integrated scattering formula from Stover16, this 
requires a nominal surface roughness of less than 6 
Angstroms for the optical components for high-
frequency roughness (note that this is not the same as 
the scratch and dig specification).  This is perhaps an 
unnecessarily stringent specification, since the forward 
scattered light is basically in phase with the main beam 
for small surface roughness (surface roughness much 
less than the wavelength).  For surface roughness the 
order of 1 nm (typical of high quality optical coatings), 
a relaxed specification would be to require that the 
noise due to the surface roughness and the vectorial 
addition to the phase due to the beam intensity be less 
than the photon noise.  Since surface roughness of one 
or two nanometers is expected, the noise at 0.1% 
illumination due to the scattering would be about 
0.008% of a wavelength or more than an order of 
magnitude smaller than the noise due to photon 
statistics (to be discussed below).  For practical 
purposes, forward scattered stray light from high-
quality polished optics and coatings can be ignored. 

Another source of stray light is clipping on metal 
surfaces where the light is scattered, typically more 
than once for good design, before it gets back to the 
camera.  In this case the light, having scattered from a 
rough surface (an unpolished machined metal surface), 
will nominally be arriving at all phases so that it is 
incoherent with the primary illumination.  In this case 
it is desirable to design the system so that the 
amplitude from the scattered light is less than the 
photon statistics from the weakest part of the target 
beam (which might only be 10% to 1% of the highest 
target intensity at the camera).  For an average of 
100,000 photons per pixel in the target beam, this 
would imply that the stray light from clipping actually 
reaching the camera would be less than 0.1% of the 
incident beam.  This is probably too stringent for 
incoherent light reaching the camera, but serves as a 

reasonable design goal.  A softer design goal would be 
to have the statistical noise from the clipped stray light 
be less than the statistical noise from the weakest part 
of the target beam.  If the dynamic range of the target 
signal is 100, this would imply that the stray light 
reaching the camera should be less than 1% of the 
average target beam intensity. 

Camera Noise Sources 

Noise sources due to the camera electronics can 
also impact the signal.  Some of these are discussed 
below. 

Electronic Noise 

A typical specification for the electronic noise from 
a high-quality CCD camera is about 30 electrons of 
readout noise and about 0.2 electrons per ms of dark 
current per pixel.17  For short exposure times (typically 
~2 ms) and for intensities greater than 900 
photoelectrons per pixel (typical intensities are 
~100,000 photoelectrons per pixel, typical full-well-
intensity for linear exposure is 300,000 photoelectrons 
per pixel) the camera electronics noise is negligible 
compared to the photon statistics, which for the 
example given of 100,000 average photoelectrons 
would be a noise level of ~300 photoelectrons (square 
root of the average number of photoelectrons). 

Camera Nonlinearities 

Nonlinearities in the camera response can cause 
higher harmonics of the sideband to appear.  These 
harmonics appear at higher brightness (camera 
exposure) and can typically be positioned so that they 
do not interfere with the hologram sideband.  
Additionally, the DDH tool can be operated at a level 
where the higher harmonics (fourth and above) do not 
appear.  The harmonics can be experimentally 
identified by looking at the live FFT of the hologram 
of a bare wafer or good mirror at a low spatial carrier 
frequency (since there is no content in the hologram 
the sideband and autocorrelation don’t visibly 
overlap).  As the camera exposure or laser intensity is 
increased the second and then the third and etc. 
harmonics will appear and can be identified.  As the 
sideband position is changed (by varying the beam-
combiner angle) the movement of the harmonics can 
be watched and the position of each harmonic 
identified, and the level it appears at associated with 
the hologram brightness.  Figure 10 shows an example 
of a bare wafer hologram with a brightness high 



enough that the third harmonic just begins to show, but 
with the third harmonic far from the sideband’s 
frequency aperture.  Peak brightness in the original 
hologram was about 1800 bits out of 4096 bits (not 
quite a 50% exposure). 

 

FIGURE 10.  Fourier transform of a bare-wafer hologram 
showing the dim second-harmonic and the very dim third-
harmonic.  Note that the FFT is on a log scale, so they are 
even dimmer than they appear. 

Gain Variation 

Variation in gain from pixel to pixel can cause the 
hologram fringes to change their apparent position—
this is a source of noise when subtracting complex 
images which have different average brightness (even 
though they are DC normalized), or if the image must 
be registered significantly in software to match it up 
with the next image.  To first order, flat-field 
correction removes this noise source.  To a higher 
order, gain-mapping the pixels in the camera and 
correcting them for gain before processing the 
hologram can equalize the pixel to pixel gain and 
remove this noise source below the level of 
measurability, if it is measurable to start with.  
Subtracting bare wafer or bare mirror holograms from 
one another at varying brightness (exposure) levels 
(with the DC variation normalized out) can reveal the 
presence of any noise due to gain variation, that 
exceeds the other noise sources.  Subtraction of static 
holograms from a bare wafer or flat mirror (taken at 
different times only, all other parameters held 
constant) will reveal the static noise level of the 
system to compare with the exposure-varied noise. 

Camera MTF 

The camera modulation transfer function (MTF) 
can alter the fringe contrast of the hologram carrier-

frequency fringes.  Typical uncoated CCD camera 
specifications for MTF at Nyquist (two pixels per 
fringe) are 65%.17  With a UV sensitive coating on the 
CCD, typical fringe contrasts achieved at nLine 
corporation are 40% to 50%, depending on the carrier 
frequency, with the order of 2.7 pixels per fringe.  This 
is considerably less than the minimum quoted CCD 
MTF, and is attributed at least partially to the presence 
of the UV-sensitive coating on the CCD sensor.  The 
effect of fringe contrast on noise will be discussed 
below in the photon statistics section. 

Optical Imperfections  

Dust on the optics, scratches or digs in the optical 
surfaces, or imperfections internal to the fused-silica 
or quartz for the transmissive optics can cause noise in 
the complex difference images if the original images 
are not flat-field corrected.  This occurs because the 
noise is always in the same location, so registering the 
images moves the noise in one image relative to the 
other.  Flat-field correction removes this noise to a 
considerable extent, but the dynamic range of the 
image at the optical defect location is at least reduced 
by the amount of the defect signal.  The best way to 
avoid this is not to have any imperfections in the 
optics.  Second-best is to use the flat-field correction 
(nominally always required unless it is known that the 
images to be subtracted are perfectly registered in 
hardware). 

Figure 11 shows an example of the phase from a 
hologram without flat-field correction.  There is an 
optical defect visible in the image, and also a true 
defect on the wafer.  Figure 12 shows the same phase 
image after flat-field correction.  The optical defect is 
no longer visible, but the wafer defect and wafer 
features remain, and the image appearance is visibly 
improved. 

Sideband 

2’nd harmonic 

3’rd harmonic 



 

FIGURE 11.  Phase image with no flat-field correction 
containing both an optical imperfection defect and a true 
defect on the wafer.  The bright white area is a phase jump, 
which normalizes out of the image as seen in the next figure. 

 

FIGURE 12.  Phase image after flat-field correction.  The 
correction removed all visible traces of the defect in the 
optics without affecting the wafer features, and greatly 
improved the visual quality of the image.  Note that the 
phase jump in the previous figure was also normalized out 
with the flat-field correction. 

Laser Noise 

Pointing 

Slow changes in laser pointing (1 or 2 seconds) can 
have the same effect as slow vibrations of the optics.  
While the holograms are still good (high-contrast 
carrier frequency fringes are formed) the pointing 
change can introduce wedge or bowl in the hologram 
difference images, and other possible differences in 
the images due to change of direction of the 
illumination.  The amount is hard to quantify since it is 
dependent on the details of the optical design.  This 
can be measured however using tools such as a 
wavefront sensor.  Such an instrument is available 
with a Shack-Hartmann sensor18 and can be used to 
quantify the pointing error of the system.  Holographic 
difference images made by looking at the same spot on 
a bare wafer or mirror but subtracting images 
separated in time can also help to quantify the system 
pointing error (by looking at wedge or bowl across the 
phase image), but give little information about where 
the error occurs. 

Intensity and Phase Noise 

Typical laser intensity fluctuations from hologram 
to hologram on the DDH tool are less than 1%.  Any 
DC fluctuation (fluctuation by a constant across the 
entire beam) can be normalized out, as can any DC 
fluctuation in the phase.  Since the laser is single-mode 
both longitudinally and transverse, fluctuations in the 
mode structure are expected to be dominated by 
photon statistics.  It is however known that the high-Q 
DUV cavity is sensitive to vibrations, so the laser 
output must be monitored in order to discard any 
frames where the beam variation exceeds the 1% 
standard. 

Process Variation 

Differences in reaction rates, concentrations, 
geometry, temperature across the wafer, acceleration 
due to spin, machine variations, etc. can cause die-to-
die differences during fabrication of a semiconductor 
wafer.  These differences are commonly known as 
“process variation” and are generally ignored if they 
don’t affect the performance or longevity of the 
resulting chips. 

The phase noise seen by a DDH tool due to a 1% 
process variation of a long edge feature (again an edge 



longer than the Rayleigh resolution), seen as the 
difference image between two die, can be estimated as 
1% of the line size and height times the Rayleigh 
resolution divided by the area the diffraction limit 
spreads the equivalent phase over (just the Rayleigh 
resolution squared).  This assumes that the 
dimensional change is sub-resolution for the imaging 
optics.  Writing this as an equation, the equivalent 
phase noise in radians is given by: 

 ( )( ) ( ) /( )P wh w h Rdf d d d l= +  (11) 

Where w is the line-width, δw is the change in the line-
width due to process variation between the two die, h 
is the line-height, and δh is the change in the line 
height due to process variation between the two die.  
Substituting wavelength divided by numerical aperture 
for the Rayleigh resolution gives: 

 ( ) 2( ) ( ) /( )P wh w h NAdf d d l= +  (12) 

As an example, assume a 1% process variation, a 
130 nm line-width, a 500 nm line-height, a 0.5NA 
imaging optic, and the previously assumed 266 nm 
wavelength illumination.  Then the calculated phase 
noise is 0.53 degrees (0.0092 radians).  Using 
wavelength to convert this phase to an equivalent 
height, the equivalent one-sigma defect height would 
be 0.39 nm.  Clearly, a 1% process variation would not 
be a large source of noise in this case.  Even a 10% 
process variation taken at the three-sigma level would 
be equivalent to a ~12 nm defect, still not significant.  
Process variation is nominally not expected to be a 
significant noise source for small feature sizes.  Taken 
over larger feature sizes, a 10% neighboring-die 
process variation could start to be a problem. For 
instance a just-resolved 300 nm line with a 10% 
variation of a 1-micron line height would look like a 
defect of 300 nm by 300 nm by 100 nm in phase 
volume, or a 96 nm cube defect. 

Photon Statistical Noise 

Phase Noise 

The fractional standard deviation of the phase due 
to photon statistics is given by (see Ref. 7 page 235, 
and modify for photon holograms rather than electron 
holograms): 
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Where µ is the actual fringe contrast of the carrier-
frequency fringes for the hologram (typically 40% to 
50% for the DDH tool), ppf is the pixels per carrier 
frequency fringe for the camera magnification, and N 
is the average number of (coherent) photons detected 
(not incident, but actually detected) per pixel or 
photoelectrons per pixel.  This represents the Poisson 
statistics (photon statistics) uncertainty in the 
positional measurement of a single fringe (one 
wavelength) due to photon statistics.  As an example, 
for 250,000 average photoelectrons (detected photons) 
per pixel at that particular fringe location, and 2.7 
pixels per fringe and a fringe contrast of 0.90 (90%) at 
the specified location, the uncertainty in the phase is 
0.0012 or 0.1% of a wavelength.  While these are all 
high numbers, they are not impossibly high numbers, 
so that reaching a sensitivity of ~1/1000’th of a 
wavelength is a possible goal.  Note that the phase 
noise will have a positional dependence in the 
hologram if the coherent photons detected and/or the 
fringe contrast varies. 

Amplitude Noise 

The photon statistics uncertainty in the amplitude 
(electric field measurement) is given by the similar 
expression for the amplitude, see Ref. 7.  Amplitude 
uncertainties may be dominated by the ability to 
normalize out DC amplitude fluctuations, rather than 
photon statistics. 

SIGNAL TO NOISE RATIO AND 
SENSITIVITY 

Given the phase noise as a fraction of the 
wavelength, it is possible to estimate the minimum 
expected phase signal for a particular specified defect 
and thereby estimate the expected signal to noise ratio.  
The expected signal can be estimated using either the 
diffraction-corrected phase estimate and assuming like 
material on like material (no optical properties 
difference between the defect and the background 
materials) or given the optical properties of all 
materials involved then the TL equations can be used 
along with simple diffraction theory to estimate the 
signal, and then the signal to noise ratio (SNR) for a 
particular NA imaging system at illumination 
wavelength λ.  The ratio of the signal to the noise 



standard deviation required to keep false counts down 
to an acceptable level can also be estimated if the 
spatial frequency of the noise is known or estimated 
and a Gaussian (normal) noise distribution is assumed 

TABLE 1. Noise and Sensitivity, Defect Material 
Identical to Background Material, 266 nm 
illumination. 

 

Table 1 shows the expected defect sensitivity of the 
phase measurement for various objectives and 
assuming various noise levels, for an illumination 
wavelength of 266 nm.  This particular table assumes 
defect material same as background material—for 
background materials with a different index of 
refraction from the defect the sensitivity can be greatly 
increased.  The first column assumes a phase noise of 
1.4% of a wavelength, a signal to noise ratio of four, 
and a defect that has dimension x by 1.5x by 500 nm 
height, for instance a scallop in a line or trench 
(remembering that the phase measurement really 
measures a defect volume).  The second column is 
similar with an assumed noise of 1% of a wavelength, 
and the third column assumes that the noise is 0.45% 
of a wavelength, just slightly larger than the expected 
photon statistics noise. 

It should be emphasized again that Table 1 is for 
the defect material being identical to the background 
material.  For small defects with different optical 
properties than the background material, the 
sensitivity is usually greatly increased. 

EXAMPLES—HARI AND PHASE 
OBJECTS 

Some examples of defects seen with the DDH 
Fathom tool are shown below. 

 

FIGURE 13.  Phase image from a 266 nm DDH tool 
showing a single bad contact in a field of more than 10,000 
good contacts.  Wafer provided by International 
SEMATECH. 

Figure 13 shows the phase image from a hologram 
of an array of contacts.  A single bad contact is clearly 
visible in the array of good contacts.  The contacts in 
the array are ~220 nm diameter on a 540 nm pitch.  
The contacts are all approximately 1500 nm deep.  The 
good contacts all penetrate down to Si, and the bad 
contact has a layer of approximately 50 nm of SiO2 at 
the bottom over the Si.  Signal from the bad contact 
relative to the good contacts is greatly enhanced due to 
the difference in optical properties between Si and 
SiO2. 

 

FIGURE 14.  This is a 3D phase image showing a single 
bad contact in a wafer contact layer. 



Figure 14 is a different example of a single bad 
contact in an array of contacts.  In this case the phase 
image is plotted as a true 3D plot of the relative phase 
signal from the contacts.  The contacts were 
approximately 200 nm in diameter at the top. 

 

FIGURE 15.  Difference image produced when a single bad 
contact signal with 60 nm defect at the bottom was 
subtracted from the holographic signal of a good contact. 

Figure 15 shows the difference image produced by 
the DDH tool when the complex image of an array 
with a bad contact having a ~60 nm defect at the 
bottom was subtracted from the complex image of an 
array of good contacts. 

FIGURE 16.  Partial height extension is invisible in 
amplitude but easily detected in phase. 

The phase sensitivity of the DDH technology is one 
of its major advantages.  Figure 16 shows another 
example of this sensitivity.  Partial height defects of 
the same or similar material as the background 
material (e.g., oxide defect on oxide background) are 
difficult to detect on conventional brightfield tools 
because they are primarily found by edge effects.  
Figure 16 displays the difference image where a field 
with a partial height defect was subtracted from the 
similar good field.  The defect shows up strongly in 

the phase difference, but is invisible in the amplitude 
difference. 

CONCLUSION 

In summary, the DDH technology shows 
tremendous potential as a tool for semiconductor 
process diagnostics and for general metrology and 
comparison of wavelength and sub-wavelength 
features. 
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nLine Corporation’s investors is even more gratefully 
acknowledged. 
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