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surface of the web. Those streaks and structures, if persistent, can show up on the final product as non-homogeneities of the
paper itself.

A number of sensors, including vision systems, have been developed for measuring paper properties both on-line[1,2] and
off-line [3]. However, nearly all are intended for the dry end and typically scan across the web resulting in less that 100% web
coverage. A few wet-end sensors have been proposed. Niemi has used a camera and illumination to determine the location and
shape of the dry line at the wet end of a fourdrinier machine [4]. Whitaker has developed a nuclear backscatter gauge to mea-
sure consistency at the wet end [5]. This gauge samples the stock at the nip of a fourdrinier machine. Kiviranta, using strobo-
scopic imaging and a charge-coupled devices (CCD) camera, has investigated the role of table activity on formation in
fourdrinier machines [6]. Viewing the wet end with the aid of a strobe light as a diagnostic tool is a fairly common practice in
the industry. The web is usually moving at speeds of up to 6000ft/mn. This makes it impossible for the naked eye to detect any
surface changes or formations. Generally, by observing the web with the help of a stroboscope, nonuniformities, flocculation,
and the action of the slurry on the wire may be discerned. Aidun has used high-speed imaging to investigate the dynamics of
the headbox in relation to the production of streaks and other nonuniform physical properties in paper [7]. Nomura has also
used stroboscopic imaging to show the varying nonuniformities in the sheet due to variations in headbox design [8]. The head-
box flow conditions have been shown to directly affect fiber orientation and other formation properties [9, 10]. While strobo-
scopic imaging is established as a viable on-line technique for paper web sensing, structured lighting techniques have only
been used in off-line applications, such as measuring the surface roughness of paper and board [11]. In other application areas
of computer vision, however, depth or range measurement using laser-based structured lighting is a well-established method
[12, 13]. Image analysis and pattern recognition methodologies are also areas that have been underutilized by the paper indus-
try researchers, especially here in the United States.

A web was first defined by Purll [14] as being any material produced in the form of strips. Textile, paper, glass, wood,
metal, food, and industrial parts on a conveyor belt can all be cited under this heading. Computer tomography images were
employed to detect internal defects in hardwood logs [15]. Multi-thresholding, morphological processing, and focus of atten-
tion mechanisms were used for the segmentation and recognition of the defects [16]. Ng et al. [17,18] used laser-based struc-
tured lighting in conjunction with 2-D images as a medium of data acquisition in a machine vision prototyper for the
inspection of lumber webs. Color histograms were computed for color based segmentation and classification of defects. Tex-
ture analysis was also a popular way of looking and segmenting defects on wood board surfaces [19]. Graf et al. [20] used
clustering and filtering software to classify sequences of defects on high quality specialty paper. Objects were classified
according to their size, shape, contrast, and location. Fourier transforms and frequential analysis were applied to dry paper
products for the construction of floc contour maps and the retrieval of paper grammage [21].

The algorithm developed in this paper addresses the problem of defect detection and measurement at a location of the web
(wet end) rarely studied before. The computer vision technique, applied for the first time to this particular problem, achieved
very satisfying results and yielded a high rate of detection as well as good accuracy of measurements.

In the following, we present the details of the developed surface characterization algorithm and illustrate its efficiency on
real images of the web.

2. SURFACE CHARACTERIZATION ALGORITHM

This section presents the details of the algorithm developed for structure detection, measurement, and characterization of the
surface of the slurry. The algorithm, shown in Figure 1., consists of four major steps: (1) Image enhancement and noise reduc-
tion, (2) facet model for topographic measurements and filtering of nonuniformities, (3) morphological processing for struc-
ture segmentation, and finally (4) geometric measurements and filtering.

The images to be processed are taken from an actual running paper web. The wet end of the web is photographed using a
CCD camera in conjunction with a high-intensity stroboscopic light used to freeze motion. The web is traveling at 1500 ft/mn
and the wire carrying the slurry is subject to other purposeful vibrations. Shaking of the table from underneath is applied via
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Figure 1. Block diagram of the surface characterization algorithm
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metallic foils running across it. Uneven and insufficient lighting at the paper mill itself as well as the nature of the strobcopic
light and the way it is applied are of concern. Very dark images with an uneven bright spot on the side are obtained. Thd
artifact was caused by water beads flying over the web and generated by the shaking action of the table, therefore in
bright spots covering large portions of the image. Figure 2 illustrates an image of the web prior to processing.

Figure 2. A raw image of the web

 2.1. Image Enhancement

The raw images obtained from the web as described in section 2. merely distinguish some structure or differenc
appearance of the various regions of the slurry surface. A background subtraction algorithm is applied to enhance th
ance of the images and make them more amenable to processing and analysis. The background subtraction algorit
described in the following.

This process was inspired from the early work of Stanley Sternberg [22]. The essence of this routine is to remove
continuous backgrounds from the image. The preprocessing consists of a background removal step in which the slo
ing portion of the image is separated and then subtracted from the original image. The resulting image contains 
sharply defined features of interest. A further enhancement step then applies a histogram stretch. The background s
is implemented using the rolling ball method [22]. This method, based on gray scale morphology, is the same as ero
dilation with a spherical structural element. Conceptually, consider the image as a 3-D graph where intensity is t
dimension. Then, place a ball underneath the surface of this graph and roll it under the entire image.   In the case of rm
image, the top point of the ball would be tangent to the image everywhere. Taking the locus of points defined by the
point of the ball as the background, the result is just the image itself. For an arbitrary image, define the topmost poe
ball at a particular(x, y)point as the background value for that point. The complete set of points forms the background image

An important parameter influencing feature sizes in the image is the ball radius, providing a filter on the size of th
area affecting the background value. After the background image is subtracted, the remaining image generally 
dynamic range than the original. A histogram stretch is applied in which the tails are truncated to expand the dynam
and enhance the features of interest that remain. Results of the background subtraction are shown on Figure 3.
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                                           Figure 3. The background subtraction algorithm applied to the image of Figure 2.

                                                                        2.2. Facet Model

The facet model is a powerful tool in image processing. Its uses range from edge detection [23,24,25], background n
tion [26], shape [27] and surface topography [28], to image segmentation procedures involving detection of corners
valleys, and ridges [29,30]. The facet model principle is based on the minimization of the error between the image th
as a piecewise continuous gray level intensity surface and the observed data from the physical scene [31]. The image
ered as a noisy discretized sampling of the surface. The general forms of the facet model include piecewise constant,
linear, piecewise quadratic, and piecewise cubic. In the constant model, each region in the image has a constant gra
the sloped model, each region has a gray level surface that is a sloped plane[29]. The model used in this work is the cy-
nomial defined by Equation (1),

       (1)

where f(x,y) is the gray level value at pixel location (x,y) whose neighborhood is to be fitted. A local vector of the 10
cients, computed as weighted sums of the values in the local neighborhood, is found for each pixel (x,y). A discrete or
polynomial basis permits independent estimation of each coefficient as a linear combination of the data values in the 
hood of (x,y). Those polynomials are given by Equation (2) for the 1-D case. The 2-D polynomials are obtained by ta
tensor product of the 2 sets of 1-D polynomials.

Let the discrete integer index set R be symmetric in the sense that  implies . Let  be the nth order poly-

nomial. The discrete polynomials are iteratively constructed as follows:

Define  Suppose  have been defined.

.                 (2)

 must be orthogonal to each polynomial . We then have the set of n linear equations

      (3)

Solving for the set of equations yields the set of discrete orthogonal polynomials
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where,

                                  (5)

The first five polynomials are given as

                 (6)

where .

The facet model consists of solving an equal weighted least square fitting problem by minimizing the error

                       (7)

in terms of the  coefficients. d(r) is the data value observed (grey level values). The coefficients of the bivariate 

Equation (1),  can then be determined. An error image describing the quality of fit is also generated. Give

10 coefficients  defining the polynomial at pixel location (x,y), a number of topographic measurements can be determi

Image intensity surface patches are labeled and grouped according to the categories defined by monotonic, gray 
invariant functions of directional derivatives, namely the gradient and the Hessian of the facets given by Equation (8).

 and                             (8)

The signs of those quantities are used to identify the region’s label. This results in the following categories: (1) P
Ridge, (3) Saddle, (4) Flat, (5) Ravine, (6) Pit, (7) concave Hillside, (8) Saddle Hillside, (9) slope Hillside, and (10) x
Hillside. The image can then be represented in a rich and hierarchical structure using these topographic units. The to
structures properties are defined in [16]. The facet model coefficients were computed for images of the wet end of 
web using a window size of . Smaller size windows were also tested and were found not to yield good result

parative images with window sizes of and13 x 13 are shown in Figure 4.
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                                            (a)                                                                                                     (b)
Figure 4. Topographic images using (a) 5x5 window and (b) 13x13 window.

It is noticeable from the results of the facet model that a number of elongated structures with distinguishable top
characteristics are present. From our observations on more than 500 processed images, the nonuniformities seem t
tain common topographic characteristics. Values that are of the types: hillside convex, hillside concave, and hillside sll
yield a good characterization of the structures in question. Based on those observations, a multilevel thresholding wa
to the topographic images where only those values corresponding to hillsides (concave, convex, saddle) were retaine

2.3. Mathematical Morphology for Binary Image segmentation

Using the image in Figure 4(b), a binary version is computed by leaving only the hillsides (concave, convex, and sadd
image still contains some noise and small size components and needs some further cleaning. Morphological process
towards the filtering of small size features and the segmentation of the image. A closing with a structuring element in -
zontal direction followed by an opening with the same structuring element are applied. The results of this operation a
in Figure 5.

Figure 5. Filtering of elongated structures using morphological operators.

A closing followed by an erosion is subtracted from the dilated version of the same image to yield a set of bound
the various structures in the image, see Figure 6. The objects resulting from the morphological processing were the
according to their size, orientation, and elongation. Figure 7 shows the result of that operation and represents the chaza-
tion of the surface of the slurry using minimum bounding rectangles (MBR) to identify the nonuniformities.
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Figure 6. Binary and boundary images of the slurry.

                                                   (a)                                                                                            (b)
Figure 7. (a) Original image of the slurry, (b) results of the surface characterization algorithm(MBR).

3. REAL -TIME IMPLEMENTATION OF THE FACET MODEL

A real-time facet model implementation is being developed for computing the surface feature parameters at30 frames per sec-
ond. This implementation is on a Detachable Maxpci containing dedicated pipeline processing hardware for image pr
applications. An initial design has been completed in which the necessary computations have been mapped to the 
Figures 8 and 9 show a block diagram of the design. The cubic polynomial approximation consists of ten terms wit
cientsk1 throughk10. Each coefficient is calculated by convolving the input image with a mask. The mask is predeterm
compute the least square fit of the Chebyshev polynomials to the input image. On the Datacube board, dedicated co
hardware is used for this computation. These computations are performed at 40 Mhz., so that a 512 x 512 image will
ms. for each coefficient calculation. With a 100-point convolver, two convolutions can be performed at the same time
to a 7 x 7 convolution mask. The total time for the coefficient calculations is approximately 35 ms. After convolution, th-
ficients are stored in memory and are used in the next step of the parameter calculations. Using the arithmetic blocks
up tables, the gradient, the gradient magnitude, the eigenvalues and eigenvectors of the Hessian are calculated. F
quantities the various feature values can be determined.
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Figure 8. Block diagram of the real-time implementation of the facet model

4. CONCLUSION AND FUTURE WORK

In this paper, we propose a new application for the facet model algorithm. We show that the surface of a paper web 
end can be characterized using image enhancement algorithms (the background subtraction) followed by topographi
tions via the facet model. Mathematical morphology is then used for the final segmentation of the results. Geometric
yields well-segmented images with clearly defined nonuniformities. Measurements of location, size, and orientatio
structures are also computed. The initial work on the real-time implementation of the facet model is addressed. The a
implemented yields a very good rate of detection of the nonuniformities on the surface of the web. Future work will inv
use of a laser-based structured light profiler in conjunction [32] with the CCD camera in order to study the third dime
the web not represented by the 2-D images.
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