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Machine and Process System Diagnostics Using One-Step Prediction Maps

ABSTRACT

This report describes a project that investigated a method for machine or process system
diagnostics that uses one-step prediction maps.  The method uses nonlinear time series analysis
techniques to form a one-step prediction map that estimates the next time series data point when
given a sequence of previously measured data points. The difference between the predicted and
measured values is a measure of the map error.  The average value of this error remains within
some bound as long as both the dynamic system and its operating condition remain unchanged. 
However, changes in the dynamic system or operating condition will cause an increase in average
map error.  Thus, for constant operating conditions, monitoring the average map error over time
should indicate when a change has occurred in the dynamic system.  Furthermore, the map error
itself forms a time series that can be analyzed to detect changes in system dynamics.

The report provides technical background in the nonlinear analysis techniques used in the
diagnostic method, describes the creation of one-step prediction maps and their application to
machine or process system diagnostics, and then presents results obtained from applying the
diagnostic method to simulated and measured data.  

1. - INTRODUCTION

This report describes a preliminary investigation of a method for machine or process system
diagnostics that uses one-step prediction maps.  The main advantages of this method over current
predictive maintenance methods are that this method uses time domain data, does not rely on
extracting multiple descriptors from the data, and little user expertise is required to interpret the
analysis results.  We believe these advantages make this method an attractive alternative to
current predictive maintenance methods.

Existing diagnostic methods are effective in identifying precursors of equipment failure well in
advance of catastrophic failure.1,2,3  However, these methods require specialized equipment and
highly trained specialists to properly collect and analyze data and to interpret the analysis results.
The relatively high overhead costs associated with this type of predictive maintenance, combined
with the lack of an accepted method to estimate the resulting cost savings and the management
perception that such maintenance programs are not “essential”, has resulted in many predictive
maintenance programs being severely cut back or eliminated.4,5

A simpler, less costly, predictive maintenance approach may be an attractive alternative for many
applications.  The new diagnostic method has the potential for relatively inexpensive
implementation requiring a minimum of sensors, specialized equipment, and user expertise.  For
this reason, we believe the new method may be especially appealing to manufacturing and process
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industries that recognize the need and benefits of predictive maintenance programs but are unable
to commit the resources required to implement current predictive maintenance practices.

The Technical Background section presents a summary of the nonlinear time series analysis
techniques used in the creation of one-step prediction maps along with a description of how one-
step prediction maps are formed.  This section is followed by a description of how one-step
prediction maps are used as a diagnostic tool, forming the basis for the diagnostic method.  The
Application Results section describes the application of one-step prediction maps as diagnostic
tools to simulated and measured time series.  The Summary presents conclusions based on the
application results.

2. - TECHNICAL BACKGROUND

The diagnostic method uses nonlinear time series analysis techniques to form a map that, given a
sequence of time series data points, predicts the next time series point. The map effectively
models the dynamics of the system that is generating the time series.  Comparison of the predicted
values and the subsequently measured values indicates how well the map models these dynamics
(assuming noise is negligible).  The average difference between the predicted and measured time
series values is a measure of the map’s error.  This error remains within some bound as long as
the dynamic system and its forcing function remain unchanged.  However, changes in the dynamic
system or its forcing function will cause a significant increase in the map error.  Thus, monitoring
the map error over time should indicate when a change has occurred in either the dynamic system
or its forcing functions.

Neither advance knowledge of the system dynamics to detect the system change nor complicated
analysis to interpret the results is required.  The level of error simply indicates that some system
change has occurred between when the one-step prediction map was created and the current
measurement.  An extension of the technique would involve calculating maps for multiple machine
fault conditions and comparing their prediction errors; the condition corresponding to the smallest
map error would be identified as being closest to the current machine condition.  A brief
description of the nonlinear analysis techniques used to create the maps, the map creation itself, 
and some relevant results from previous work are given in the remainder of this section.

2.1 - Application of Nonlinear Time Series Analysis Techniques

Nonlinear time series analysis techniques are used to determine the optimum time delay used to
reconstruct the attractor, and to determine the minimum embedding dimension for reconstruction. 
If the measured time series is entirely random, any attempt to create a map to approximate and
predict the measured time series will be futile.  For deterministic systems, the underlying dynamics
can be characterized from a time series by applying the method of delays.6 The dynamics will
usually be multidimensional, with the dimension being initially unknown.  Once the
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Ai ' t ( i ) , t ( i & nopt ) , t ( i & 2nopt ) , . . . . , t ( i & de nopt ) (1)

I ( S, Q) ' H (S ) % H( Q) & H (S, Q ) , (2)

multidimensional attractor is reconstructed from the measured time series, a map that
approximates this attractor can be created.

2.1.1 - Attractor reconstruction

Multidimensional attractor reconstruction is performed by using the method of delays.6   In this
method, vector components are created from a scalar time series by using time series values
separated by a delay time.  The number of dimensions used in the attractor reconstruction, de, is
calculated by using global false nearest neighbors and the optimum time delay, τ, equals the time
corresponding to the first minimum in the mutual information function.  Thus, the ith point of the
reconstructed attractor, Ai,  is given by

where t(I) is the ith time series point and nopt is the number of samples corresponding to τ.

2.1.2 - Mutual information

It is generally accepted that the optimum time delay, J, used to reconstruct an attractor from a
time series corresponds to the time at which the first minimum occurs in the mutual information
function.7  The time delay corresponding to the first minimum in the mutual information function
is the minimum time interval necessary for two variables to become essentially uncorrelated.  An
attractor reconstructed by using J as the delay time will have uncorrelated components while
avoiding the "folding" typical of using values of time delay that are too large.

The mutual information function is similar to the autocorrelation function except that it measures
the general dependence of two variables rather than only the variable's linear dependence.  Note
that random data will be uncorrelated, thus, the mutual information function can be used to
indicate if a time series contains correlated information from a deterministic source or if the time
series is simply random noise.  

The derivation of the mutual information function for two series of measurements S and Q,
I(S,Q), is given in [7].  The resulting expression for I(S,Q) is

where H is the entropy of the series of measurements.  
If the series of N measurements S is given by (s1, s2, s3, ..., sN), then the entropy, H(S), is given by
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H (S ) ' & j
N

i ' 1

Ps (si) log2 Ps ( si ) , (3)

H( S,Q ) ' & j
N

i ' 1
j

N

j' 1

Ps q ( si , qj) log2 Ps q ( si , qj) , (4)

where Ps(si) is the probability of a measurement being equal to si.

In a similar manner, if S = (s1, s2, s3, ..., sN) and Q = (q1, q2, q3, ..., qN) are two sets of
measurements, then the entropy of the combined set of measurements, H(S,Q), is given by

where Psq(si,qj) is the probability of qj occurring if si is known to occur.  In this application, S
corresponds to the time series and Q is obtained from S by delaying S by )T.

The mutual information is calculated by using equations (2), (3) and (4) for a range of delay times. 
For a deterministic time series, plotting the values of I(S,Q()T)) (where the dependence of Q on
the delay time is explicitly shown) against delay time results in an initially decreasing values of
I(S,Q()T)) as delay time increases.  I(S,Q()T)) eventually will pass through a minimum and will
then vary, always remaining at a relatively low value.  The value of delay time at which the first
minimum of I(S,Q()T)) occurs is the reconstruction delay time, J, selected to perform the
attractor reconstruction.

2.1.3 - Method of global false nearest neighbors

The method of global false nearest neighbors is based on a simple geometric concept: if the
number of dimensions d used to reconstruct an attractor is too small, many points that appear
“near” will become widely separated when d + 1 dimensions are used in the attractor
reconstruction.8  Nearest neighbor points that experience this wide separation when comparing
their distances in dimension d  and d + 1 are false nearest neighbors in dimension d.   Conversely,
true nearest neighbors will remain near each other in attractor reconstructions of both d and d + 1
dimensions.  The adequacy of dimension d for reconstructing an attractor can be evaluated by
selecting a number of random points and their nearest neighbors in dimension d and then
calculating the percentage of false nearest neighbors.

Typical results of this calculation for noise free data show the percentage of false nearest
neighbors to be relatively high for low dimensional attractor reconstructions, with the percentage
of false nearest neighbors decreasing with increasing dimension, eventually reaching and
remaining at a value near zero.  The lowest dimension corresponding to this minimum value of the
percentage of false nearest neighbors is the embedding dimension, de.  Noisy data show similar
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R 2
d % 1 (n )

R 2
d (n )

> R tol , (5)

R 2
d % 1

F2
>A tol , (6)

xi % 1 ' j
N

n ' 1

8nNn, i( 2xi & "n 2 ) , (7)

results, except the percentage of false nearest neighbors reaches a minimum at de and then
increases with increasing dimension.  The minimum percentage of false nearest neighbors will not
approach zero for noisy data; the amount of random noise contamination will determine the value
of the minimum in the global false nearest neighbors calculation results.

A pair of points are considered false nearest neighbors in dimension d if

where Rd(n) is the Euclidean distance between the nth point and its nearest neighbor in d
dimensions,  Rd+1(n) is the Euclidean distance between the nth point and its nearest neighbor in d
+ 1 dimensions, and Rtol is the first criteria for declaring nearest neighbor pairs to be false.8  A
second criteria, needed because near neighbors may not be especially “close”, is given by

where σ is the standard deviation of the time series and Atol is the second criteria for declaring
nearest  neighbor pairs to be false.8  A nearest neighbor pair are declared false if either test
(equations (5) and (6)) fails.  In our work, the values used for the criteria in equations (5) and (6)
have been and .Rtol ' 17.1 Atol ' 1.8

2.1.4 - Description of radial basis function maps

Previous work has shown that good one-step prediction accuracy can be obtained by using radial
basis function maps.9  The general form of maps composed of radial basis functions is given by

where x is the time series variable, I is the ith iterate, N is the number of terms in the map, λn is
the coefficient (or weight) of the nth term, φ() is the radial basis function, and αn is the nth basis
vector or center.10   Note that the Euclidean norm between the point xi and the center αn is the
argument supplied to the function φ().  Following the example described in [10], the form of the
radial basis function φ() used in this work is given by
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Nn, i ' j
de

k ' 1
xi,k & "n,k % C 2

&$

. (9)

x i % ' M , (10)

( r ' ( 2 % 2 ) $ ,

here , and is a constant.  Substituting the Euclidean norm into equation 8 for r> & , $ 0
yields the form for the radial basis function proposed for this work:

λn N data points.  This fitting results in the
λn

where Φ  = φ .  Singular value decomposition has been used to determine the values of the λ
that give the best prediction of the x + 1.

  
Two examples of map performance are given in this section.  The first example is from a map

from the noise created by air blowing over a microphone.

3.1 - Example 1 - The Lorenz System

system has been a ‘workhorse” for nonlinear dynamic studies because it exhibits rich nonlinear
behavior.  The Lorenz system is given by

dt
' (Y X ) (11)

dY
' r & Y X Z (12)

and

dt
' bZ X Y (13)
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Figure 1. Comparison of calculated and map-predicted values for the Lorenz
system.  The values have been normalized to be between +1 and - 1.

where F, r, and b are constants and X, Y, and Z are the time dependent coordinates.11

Equations (11), (12), and (13) were integrated by using a fourth-order Runge Kutta numerical
integration algorithm.  Values of F = 10, r = 28, and b = 8/3; initial conditions of X = 0.01, Y =
0.02, and Z = 0.15 ; and an integration step size of 0.0005 seconds were used in the calculation. 
Values of X, Y, and Z were tabulated for 0.005 second intervals. 

The attractor used in the map calculation was obtained from the X coordinate by using the method
of delays.  The optimum time delay for the reconstruction was set equal to the first minimum in
the mutual information function and corresponded to 30 samples.  The embedding dimension was
calculated to be 4 based on the minimum value of the global false nearest neighbor calculation.  A
90-term radial basis function map was used to model the time series.  K-means clustering was
used to select the 90 centers from the attractor; it is felt that selecting the centers in this way
ensures that the centers are reasonably representative of the entire attractor.

A comparison of the calculated and the map-predicted values of the time series is shown in figure
1.  Note that the calculated and the predicted values are nearly identical.  The ability of the map to
predict the time series so accurately is due mainly to the fact that the time series is noise free.  Map
error becomes larger for noisy real-world time series. 
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Figure 2.  The normalized time series obtained from the recording.

3.2 - Example 2 - A Recorded Time Series

The second example uses a recording made of air from a fan blowing over a microphone as the
time series. The recording was digitized at a sample rate of 11025 Hz and stored as 16-bit integers. 
The frequency response of the microphone is unknown but is not believed to be of particularly high
fidelity.  The time series is shown in figure 2.

The optimum time delay for the reconstruction was again set equal to the first minimum in the
mutual information function and corresponded to 38 samples.  The embedding dimension was
calculated to be 4.  A 90-term radial basis function map was used to model the time series. 

A comparison of the calculated and the map-predicted values of the time series is shown in figure 
3.  The map accurately predicts the recorded time series but that the agreement between the
measured and predicted values is poorer than was obtained with the Lorenz system.  The poorer
agreement is attributed to the presence of random noise in the recorded signal.
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Figure 3.  Comparison of the measured and predicted time series for the
recorded data.

4. - APPLYING ONE-STEP PREDICTION MAPS TO THE PROBLEM OF MACHINE
OR PROCESS SYSTEM DIAGNOSTICS

The application of one-step prediction maps for diagnosing machinery or process system condition
is straight forward.  A baseline time series is collected from the machine or system during normal 
operation.  The nonlinear time series analysis techniques described above are applied and a suitable
one-step prediction map is created.  This map is then used to calculate the average map error for
the baseline time series.

Once the one-step prediction map and the average absolute map error for the baseline time series
are obtained, monitoring is performed by using the one-step prediction map to periodically
calculate the average absolute map error using a current time series.  The current value of map
error is compared with the map error for the baseline time series.  A significant increase in the map
error indicates that a change in the system has occurred.

It seems unlikely that the determination of what constitutes a “significant” map error change can be
made without resorting to data collected from the machine or system operating over a range of
conditions.  Thus, before one-step prediction maps can be used for monitoring, map errors for a
range of known conditions should be calculated.  These map errors can then be used to determine
whether a given map error change is significant or falls within normal variations.
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A variation of this approach is to calculate one-step prediction maps for each of the known
conditions.  A crude diagnosis could be performed by calculating the map error for a given time
series using one-step prediction maps corresponding to each known condition.  The current
condition would be diagnosed as being the one corresponding to the condition used to create the
one-step prediction map that gives the smallest map error.

5. - APPLICATION RESULTS

Use of one-step prediction maps as indicators of changes in dynamic systems was investigated by
using simulated and measured time series.  Advantages of using simulated time series in the
evaluation are that dynamic system changes are of known magnitude, occur at known times, and
the time series are noise free.  The advantage of using a measured time series in the method
evaluation is that the method performance can be evaluated under real-world conditions, where
noise and uncertainty exist.  The use of both simulated and measured time series provides a
reasonable evaluation of the method’s potential for use in machine or process system diagnostics.

5.1 - Test of the Diagnostic Method by Using a Simulated Time Series

The first tests of the diagnostic method were performed by using a simulated time series.  The 
Lorenz system of equations was selected as the dynamic system.  This system experiences chaotic
behavior for a proper choice of the parameters F, r, and b.  In this work F = 10 or 12, r = 28, and
b = 8/3; these values result in chaotic dynamic behavior.

5.1.1 - Effect of parameter change on the average map error

Three time series spanning a period equivalent to 400 seconds were created by integrating
equations 11, 12, and 13.  The calculated data was recorded for time intervals of 0.005 seconds.  A
F value of 10 was used during the first 200 seconds and a F value of 12 was used during the final
200 seconds.  The initial 100 seconds of data were discarded to avoid the initial transient. 

The time series corresponding to the X component was used in the test.  The calculated first
minimum in the average mutual information function was equal to 0.16 seconds and the calculated
embedding dimension was 5.  A 90-term radial basis function map was created by fitting the first
10000 stored time series points; these points were calculated by using a value of F = 10.  The map
error was calculated for each point in the time series and evaluated for an indication of the change
in the value of F at t = 100 seconds.  

Figure 4 shows the map error for entire time series.  During the first 100 seconds, the average map
error equals -0.0008 and the standard deviation = 0.00186.  During the final 200 seconds, the
average map error equals -0.00018 and the standard deviation = 0.00338.  The average map error
clearly indicates that a parameter change, i.e., a change in the system dynamics, occurred at
approximately t = 100 seconds.  These results show that for a noise-free time series, the average
map error can indicate a change in system dynamics.  Furthermore, if a dynamic change occurs at a
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particular time τ, the effect of that dynamic change on the map error will occur at the time τ + ∆τ,
i.e., one sample after the change occurs.
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Figure 4.  The prediction error for the Lorenz time series.  Note
the discontinuity at t = 100 seconds.

5.1.2 - Effect of adding a sine wave to the time series

A second example using simulated data involved adding a sine wave of unit amplitude and a
frequency of 1 Hz to the X component for t > 100 seconds.  The previously-calculated 90-term
radial basis function  map was used in this example.  The map error was calculated for the time
series and transformed into the frequency domain.  

Figure 5 compares the frequency spectrum for the map error time series containing the added sine
wave (t > 100 seconds) with the frequency spectrum for the map error time series with no sine
wave (t < 100 seconds).  Note that the 1 Hz component is clearly visible in the spectrum
containing the sine wave and that the amplitude of this spectrum is considerably greater than that
of the spectrum without the sine wave, a finding consistent with the results of the previous
example.

Figure 6 compares the frequency spectra of the X component of the Lorenz attractor with the
added sine wave with the X component of the Lorenz attractor with no sine wave. The comparison
shows no significant differences between the two spectra.  These results indicate that the map error



12

may be a sensitive indicator of changes in the time series dynamics and that its frequency domain
may be superior to its time domain for detecting changes in a time series.
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Figure 5.  Comparison of the map error spectra with and without
the added sine wave.
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Figure 6.  Comparison of the spectra of the Lorenz attractor X
component with and without the added sine wave.
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Comparing figures 5 and 6 show that the sine wave is not detectable in the time series spectra, but
is easily detected in the map error spectra.  This result implies that a dynamic change may be
detectable in the map error spectrum before it could be detected in a spectrum formed from the
measured time series.  More generally, the results of investigating the effects of adding a sine
wave to a time series agree with the previously shown results; the map error is seen to be very
sensitive to changes in time series dynamics.  In addition, the results show that if a dynamic
change occurs at a particular frequency, the effect of the dynamic change on the map error will
occur at that same frequency.  This result is important because many common machinery faults
occur at known ratios of the machine operating speed.  Thus, the same diagnostic rules used to
interpret machinery vibration spectra may be applied to interpret map error spectra.  

5.2 - Test of the Diagnostic Method by Using a Measured Time Series

The diagnostic method was tested by using radio frequency (RF) data collected at an industrial
plant for the purpose of detecting electrical arcing in motors.   Two data sets were used.  The first
data set was inadvertently low-pass filtered, resulting in a data set that contained no information
indicative of arcing (arcing is a high-frequency phenomenon).  The second data set was high-pass
filtered and was useful for detecting arcing.  For both data sets, the data was collected for two
seconds at a sample rate of 2 MHZ and low-pass filtered using a cut-off frequency of 1 MHZ to
avoid aliasing.  The low-frequency data was used to investigate the effectiveness of the average
absolute map error for detecting changes in motor current.  The high-frequency data was used to
investigate the effectiveness of analyzing the map error time series for detecting arcing.

5.2.1 - Average absolute map error

The first data set was inadvertently low-pass filtered using a cut-off frequency of 10 KHZ (this
second filtering wasn’t discovered until after the analysis was completed).   Separate data files
were collected for different values of motor current.  A summary of the data files is shown in
Table 1.

Table 1 - Summary of  RF Data Files

File Designator
Motor Current

(amperes)

1,2, & 3 26

4, 5, & 6 61

7, 8, & 9 123

10, 11, & 12 160

13, 14, & 15 202

16, 17, & 18 221

19, 20, & 21 249
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Figure 7.  Average absolute map error for different motor current
values.

A time series taken from data file 1, which corresponds to the lowest motor current value used in
the test, was used as the baseline time series.  This data was low-pass filtered, down sampled by a
factor of 30, and used to form a 30,000-point baseline time series.  The down sampling was
performed to allow a larger time interval to be used in the map error calculation without making
the number of points in the baseline time series unwieldy.  A 90-term radial basis function map
was created by using a reconstruction time delay of 54 samples and an embedding dimension of 8. 

High correlation between the average absolute map error and the motor current is shown in
Figure 7.  This result indicates that map error is sensitive to changes in real systems (in this case
motor current) and may be sufficiently robust to be used with measurements.  The map error fails
to show arcing because of the data being low-pass filtered at 10 KHZ. 

5.2.2 - Analysis of the Map Error Time Series

The second attempt at using map error to detect arcing involved analyzing the time series of the
map.  RF data was collected for motor currents of between 25 and 300 amperes and with the
motor brushes in the ~4 bar position.  Four-million point data files were stored for each
combination of motor current and brush position.  Table 2 gives the conditions corresponding to
the data files used in the evaluation.
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Table 2. Summary of High-Frequency Data Files

Condition File Name Motor Current
(amperes)

Brush Position

no arcing A3.055.txt 28 ~4.0 bar

no arcing A3.057.txt 58 ~4.0 bar

no arcing A3.059.txt 120 ~4.0 bar

light pin fire A3.061.txt 198 ~4.0 bar

medium arcing A3.063.txt 249 ~4.0 bar

heavy arcing A3.066.txt 300 ~4.0 bar

Figure 8 shows the Fast Fourier Transform (FFT) magnitude of the RF data collected during non-
arcing conditions.  Figure 9 shows the FFT magnitude of the RF data collected during heavy
arcing.  Comparing the two frequency spectra reveals little qualitative difference between the two
spectra and shows why attempting to detect arcing from the RF data is so difficult.  Note that the
time series used to calculate these FFT’s were normalized to be between ±1 for use in map
creation.  The one-step prediction map used in the map error evaluation was formed by using
thirty thousand data points from a baseline time series collected for non-arcing.  Nonlinear
analysis showed that the baseline time series had an embedding dimension of six and an attractor
reconstruction time delay of 9.0×10-6 seconds (this time delay corresponds to 18 samples).  These
nonlinear parameters were used to form a 50-term radial basis function map.  The baseline map
error time series is shown in Figure 10.  
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Figure 8.  FFT magnitude of normalized RF data collected during non-arcing
conditions.
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Figure 9.  FFT magnitude for normalized RF data collected during heavy
arcing.



17

Pt ' j
N

i ' 1

Mei
2 , (14)

0 10 20 30 40 50 60 70 80 90 100

frequency (Hz)

0E0

1E6

2E6

3E6

4E6

5E6

F
F

T
 m

ag
ni

tu
de

Figure 10.  Variation of map error power in the frequency domain.

5.2.2.1 - Analysis of map error power 

One useful descriptor characterizing the map error time series is the total power, Pt, given by 

where Me is the map error time series and N is the number of time series points.  Time-dependent
behavior of the total map error power was calculated by taking a series of 32768-point Fast
Fourier Transforms (FFT’s) with each data block overlapping all but 512 points of the previous
data block.  Figure 11 shows the time-dependent behavior of the map error power for the baseline
time series; the FFT magnitude of this time series is shown in figure 12.  These results show that
the map error power (and the map error itself) oscillates at the motor rotational frequency of five
Hz.  Closer inspection of Figure 10, which corresponds to one full revolution of the motor, shows
a small amplitude region during the first half of the revolution (for times less than 0.1 second) and
a larger amplitude region during the second half of the revolution (between 0.1 and 0.2 seconds). 
This behavior is responsible for the oscillations shown in figures 11 and 12.
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Figure 11.  The map error time series for the baseline time series (file
A3.055.txt).
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Figure 12.  Variation of map error power in the time domain.  The map error
was calculated by using a map formed from the first 50000 points in the baseline

time series.
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There was some initial concern over the source of the five Hz oscillation; it was speculated that
the oscillation could be an artifact of the map coefficient calculation.  Because the map is
calculated by using data points corresponding to a small fraction of a single revolution, it may be
possible for the map to not accurately represent the dynamics of the entire revolution.  If this were
the case, a map error that oscillates at the running speed would be expected.

To investigate this possibility, a second one-step prediction map was created by using data points
corresponding to the high amplitude portion of figure 12.  Comparison of the map error power
time series would then show if the oscillation was caused by the map coefficient calculation or is a
true feature of the data.  If the high-amplitude part of the map error time series is caused by a
variation in the system dynamics over one motor revolution, then  a relatively small amplitude
should occur for that part of the motor revolution used in the calculation of the map coefficients. 
If the high-amplitude part of the map error time series is a true signal feature, then the two map
error power time series will be qualitatively the same.

A one-step prediction map was formed from 30,000 data points from the baseline time series
beginning 0.1 seconds from the start of  the time series (i.e., during the high amplitude portion of
the time series shown in Figs. 10).  The map error time series formed by applying this map to the
baseline time series is shown in Figure 13.   The results are qualitatively the same as those shown
in Figure 11.  Because the low and high amplitude sections appear over the same portion of motor
revolution, it can be concluded that the five Hz oscillation is a feature of the signal and is not an
artifact of how the map coefficients were calculated.
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Figure 13.  Variation of map error power in the time domain.  The map error
was calculated by using a map formed by using 50000 points beginning at t = 0.1

seconds in the baseline time series.  
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Figure 14.  FFT magnitude of a map error time series collected during non-
arcing conditions. 

5.2.2.2 - Power ratio - an arcing discriminator

The power ratio used as an arcing discriminator is calculated by dividing the power in the map
error time series between 900 KHZ and 1 MHZ by the total power.  This ratio was suggested after
comparing map error time series in the frequency domain for non-arcing and arcing conditions. 
Figure 14 shows the FFT magnitude of the baseline map error time series (non-arcing).  The FFT
magnitude has a large amplitude region between 100 KHZ and 200 KHZ with small amplitudes at
higher frequencies.  Figure 15 shows the FFT magnitude of the map error time series for RF data
collected during heavy arcing.  This FFT magnitude has a large amplitude region above 900 KHZ. 
The ratio of the power for frequencies greater than 900 KHZ to the total power should have a
small magnitude for non-arcing and a large magnitude when arcing occurs.

The power ratio was calculated for each of the available data files.  The data was divided into
8192-point data blocks with each data block overlapping all but 512 points of the previous data
block.  Each block was transformed into the frequency domain and the power ratio was calculated. 
The average power ratio was then calculated for each data file.  The calculation results are shown
in Figure 16 and tabulated in Table 3.  
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Figure 15.  FFT magnitude of a map error time series collected during heavy
arcing.
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Figure 16.  Power ratio for conditions ranging from non-arcing to heavy
arcing.
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Condition Motor Current
(amperes)

Power Ratio Standard Deviation
99%

Confidence
Interval

no arcing 28 0.104 0.085 0.0025

no arcing 58 0.091 0.075 0.0022

no arcing 120 0.100 0.085 0.0025

light pin
fire

198 0.229 0.142 0.0041

medium
arcing

249 0.229 0.111 0.0032

heavy
arcing

300 0.241 0.116 0.0034

Table 3.  Power Ratio for a Range of Arcing Conditions.

The power ratio appears to be a good discriminator of arcing.  The power ratio is approximately
twice as large for time series recorded during arcing compared with time series recorded during
non-arcing conditions.  Furthermore, the results suggest that the power ratio may increase with the
severity of the arcing; the power ratio for heavy arcing is greater than those of moderate arcing or
light pin fire.

6. - SUMMARY

The present work indicates that the map error formed by using one-step prediction maps can be
used to indicate when a system has experienced a change affecting its dynamics.  The ability to
detect changes in the time series of dynamic systems such as machinery or process systems allows
the map error to form the basis for a form of machine or process system diagnostics.  This form of
diagnostics can be reduced to an overall measure of “sameness” characterized by the comparison
of the average absolute map errors for baseline and subsequent time series. 

6.1 - Research Accomplishments

It has been shown that the map error for a synthetic system (the Lorenz system) can successfully
be used to indicate when a system parameter change occurs.  Furthermore, it has been shown that
in addition to giving an indication characterizing the overall behavior of a time series (i.e., the
average absolute map error for a time series), the map error itself forms a time series with
enhanced sensitivity to system changes.  It has been shown that if a significant change occurs in a
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dynamic system at a time τ, the effect on map error time series will occur at time τ + ∆τ. 
Necessarily, if a significant change occurs in a dynamic system at a particular frequency, the map
error time series will show the change at that same frequency.  This result means that known
relationships between running speed and particular faults, which are well known, can be used to
diagnose the cause of peaks in map error frequency spectra. 

This evaluation of map error as an indicator of motor arcing in RF data is very encouraging.  The
map error spectra show features indicative of arcing that are not present in the spectra of the RF
data.  These features can be used to obtain a discriminator, the power ratio, that potentially can be
used to detect when arcing occurs.  

The comparison of RF data for arcing and non-arcing conditions shows no significant differences
between the frequency spectra for these two conditions.  Thus, detecting when arcing occurs
would be difficult based on the RF data.  The map error time series shows a significant increase in
power in the higher frequencies when arcing occurs.  This finding is not surprising, because the
map error is a sensitive indicator of change from the baseline condition used during map formation
and arcing is known to occur at high frequencies.  Thus, the map error contains significant energy
at high frequencies when arcing occurs. 

A simple discriminator indicative of arcing is the power ratio, which is the power in the map error
time series for frequencies greater than 900 KHZ divided by the total power.  The numerical value
of power ratio is small for non-arcing conditions but increases when arcing occurs because of the
increase in high-frequency energy.  Results using the high-frequency data show that the power
ratio approximately doubles during arcing.

The power ratio is highly variable, a fact shown by its large value of standard deviation.  This large
value is caused by the 5 Hz oscillation in total power shown in Figs. 10, 11, and 12.  The cause of
this oscillation is unknown, but is clearly a feature of the signal and is not an artifact of map
creation. 

6.2 - Areas for Future Research

Map error, either as an overall indicator of time series “sameness” or as a time series analyzed
independently, shows promise for performing machine or system diagnostics.   The current  results
indicate that further exploration of the potential of this approach is warranted.  Further exploration
in the area of diagnostics should concentrate on evaluating the effectiveness of map error for
detecting changes in measured time series obtained from either machinery or process systems.

It is likely that map error may be useful for other applications.  Speaker and/or word recognition
and sensor validation are two applications that have already been partly explored.  Medical
applications appear to be a natural extension of the current diagnostic work.  Innovative uses for
map error and map error diagnostics may be a useful approach for a number of additional
applications.
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6.3 - Efforts to Secure Follow-on Funding

Information gained and results generated from this investigation will be useful in the preparation of
proposals and white papers.  Several areas appear particularly promising regarding future use of
the method.  In the area of predictive maintenance, detection of arcing certainly is a problem that
can be solved by using this method.  It would not be unreasonable for companies, such as Alcoa,
with a large number of electric motors, to be targeted as likely sponsors of follow on work.  The
Navy has a great interest in predictive maintenance for surface ships (i.e., the “Smart Ship
Program”), so they may also be a likely source of follow-on funding for this effort.  Medical
diagnostics may be another promising area for the method’s application.  Recently representatives
from Biomec, Inc. have shown some interest in the potential of the method for interpreting EKG
signatures.  National Security Programs Office contacts have an interest in speaker and/or word
identification; map error and map error diagnostics may be a useful approach to this problem.  

An invention disclosure was submitted for the method and has been elected for filing with the
United States Patent office by the LMER Office of Technology Transfer.
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Machine and Process System Diagnostics using One-Step Prediction Maps, B. Damiano, J. E.
Breeding, and R. W. Tucker, Jr.,  MARCON99 Conference, Gatlinburg, Tennessee, May 10-12,
1999.  The paper may be found in the MARCON99 Proceedings, Volume 1, pg 9.02.

Invention Disclosures

“ERID 0707, S-92,561, “Method to Enhance Features Indicative of Monitored System
Degradation.”  LMER has elected to file a patent application for this invention, but the patent
application had not been filed as of 11/5/99.
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